Publication
Article Metrics
Citations
Online attention
An ultrahigh CO2-loaded silicalite-1 zeolite: Structural stability and physical properties at high pressures and temperatures
DOI:
10.1021/acs.inorgchem.8b00523
Authors:
Tomas
Marqueno
(Universidad de Valencia)
,
David
Santamaria-Perez
(Universidad de Valencia)
,
Javier
Ruiz-Fuertes
(Universidad de Valencia; Universidad de Cantabria)
,
Raquel
Chuliá-Jordán
(Universidad de Valencia)
,
Jose L.
Jordá
(Instituto de Tecnología Química, Universitat Politècnica de València − Consejo Superior de Investigaciones Científicas)
,
Fernando
Rey
(Instituto de Tecnología Química, Universitat Politècnica de València − Consejo Superior de Investigaciones Científicas)
,
Chris
Mcguire
(University of California Los Angeles)
,
Abby
Kavner
(University of California Los Angeles)
,
Simon
Macleod
(Atomic Weapons Establishment; Institute of Shock Physics, Imperial College London)
,
Dominik
Daisenberger
(Diamond Light Source)
,
Catalin
Popescu
(CELLS-ALBA Synchrotron)
,
Placida
Rodriguez-Hernandez
(Universidad de La Laguna)
,
Alfonso
Muñoz
(Universidad de La Laguna)
Co-authored by industrial partner:
Yes
Type:
Journal Paper
Journal:
Inorganic Chemistry
State:
Published (Approved)
Published:
May 2018
Abstract: We report the formation of an ultrahigh CO2-loaded pure-SiO2 silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO2 medium. The CO2-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO2 molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to that of the parental empty one. The structure of CO2-loaded silicalite-1 was also monitored at high pressures and temperatures, and its thermal expansivity was estimated.
Diamond Keywords: Carbon Capture and Storage (CCS)
Subject Areas:
Chemistry,
Materials,
Environment
Facility: Advanced Photon Source; ALBA-CELLS
Added On:
09/05/2018 14:49
Discipline Tags:
Zeolites
Earth Sciences & Environment
Climate Change
Chemistry
Materials Science
Inorganic Chemistry
Technical Tags: