Article Metrics


Online attention

An ultrahigh CO2-loaded silicalite-1 zeolite: Structural stability and physical properties at high pressures and temperatures

DOI: 10.1021/acs.inorgchem.8b00523 DOI Help

Authors: Tomas Marqueno (Universidad de Valencia) , David Santamaria-Perez (Universidad de Valencia) , Javier Ruiz-Fuertes (Universidad de Valencia; Universidad de Cantabria) , Raquel Chuliá-Jordán (Universidad de Valencia) , Jose L. Jordá (Instituto de Tecnología Química, Universitat Politècnica de València − Consejo Superior de Investigaciones Científicas) , Fernando Rey (Instituto de Tecnología Química, Universitat Politècnica de València − Consejo Superior de Investigaciones Científicas) , Chris Mcguire (University of California Los Angeles) , Abby Kavner (University of California Los Angeles) , Simon Macleod (Atomic Weapons Establishment; Institute of Shock Physics, Imperial College London) , Dominik Daisenberger (Diamond Light Source) , Catalin Popescu (CELLS-ALBA Synchrotron) , Placida Rodriguez-Hernandez (Universidad de La Laguna) , Alfonso Muñoz (Universidad de La Laguna)
Co-authored by industrial partner: Yes

Type: Journal Paper
Journal: Inorganic Chemistry

State: Published (Approved)
Published: May 2018

Abstract: We report the formation of an ultrahigh CO2-loaded pure-SiO2 silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO2 medium. The CO2-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO2 molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to that of the parental empty one. The structure of CO2-loaded silicalite-1 was also monitored at high pressures and temperatures, and its thermal expansivity was estimated.

Diamond Keywords: Carbon Capture and Storage (CCS)

Subject Areas: Chemistry, Materials, Environment

Facility: Advanced Photon Source; ALBA-CELLS

Added On: 09/05/2018 14:49

Discipline Tags:

Zeolites Earth Sciences & Environment Climate Change Chemistry Materials Science Inorganic Chemistry

Technical Tags: