Article Metrics


Online attention

Identification of a tyrosine switch in copper-haem nitrite reductases

DOI: 10.1107/S2052252518008242 DOI Help

Authors: Jianshu Dong (University of Liverpool) , Daisuke Sasaki (University of Liverpool) , Robert R. Eady (University of Liverpool) , Svetlana V. Antonyuk (University of Liverpool) , S. Samar Hasnain (University of Liverpool)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Iucrj , VOL 5 , PAGES 510 - 518

State: Published (Approved)
Published: July 2018

Open Access Open Access

Abstract: There are few cases where tyrosine has been shown to be involved in catalysis or the control of catalysis despite its ability to carry out chemistry at much higher potentials (1 V versus NHE). Here, it is shown that a tyrosine that blocks the hydrophobic substrate-entry channel in copper-haem nitrite reductases can be activated like a switch by the treatment of crystals of Ralstonia pickettii nitrite reductase (RpNiR) with nitric oxide (NO) (−0.8 ± 0.2 V). Treatment with NO results in an opening of the channel originating from the rotation of Tyr323 away from AspCAT97. Remarkably, the structure of a catalytic copper-deficient enzyme also shows Tyr323 in the closed position despite the absence of type 2 copper (T2Cu), clearly demonstrating that the status of Tyr323 is not controlled by T2Cu or its redox chemistry. It is also shown that the activation by NO is not through binding to haem. It is proposed that activation of the Tyr323 switch is controlled by NO through proton abstraction from tyrosine and the formation of HNO. The insight gained here for the use of tyrosine as a switch in catalysis has wider implications for catalysis in biology.

Journal Keywords: talysis; redox biology; structural biology; enzyme mechanism; denitrification; nitrogen cycle; copper-haem nitrite reductases; Ralstonia pickettii

Diamond Keywords: Enzymes

Subject Areas: Biology and Bio-materials

Instruments: I02-Macromolecular Crystallography , I03-Macromolecular Crystallography , I04-1-Macromolecular Crystallography (fixed wavelength) , I04-Macromolecular Crystallography

Added On: 09/07/2018 14:07

Discipline Tags:

Life Sciences & Biotech Structural biology

Technical Tags:

Diffraction Macromolecular Crystallography (MX)