Publication

Article Metrics

Citations


Online attention

On the decoupling of molecules at metal surfaces

DOI: 10.1039/C8CC03334J DOI Help

Authors: Xiaosheng Yang (Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich; Jülich Aachen Research Alliance (JARA)) , Ina Krieger (Institut für Physikalische und Theoretische Chemie, Universität Bonn) , Daniel Lüftner (Institute of Physics, University of Graz) , Simon Weiss (Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich) , Timo Heepenstrick (Institut für Physikalische und Theoretische Chemie, Universität Bonn) , Michael Hollerer (Institute of Physics, University of Graz) , Philipp Hurdax (Institute of Physics, University of Graz) , Georg Koller (Institute of Physics, University of Graz) , Moritz Sokolowski (Institut für Physikalische und Theoretische Chemie, Universität Bonn) , Peter Puschnig (Institute of Physics, University of Graz) , Michael G. Ramsey (Institute of Physics, University of Graz) , F. Stefan Tautz (Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich; Jülich Aachen Research Alliance (JARA)) , Serguei Soubatch (Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich; Jülich Aachen Research Alliance (JARA))
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Chemical Communications

State: Published (Approved)
Published: July 2018
Diamond Proposal Number(s): 14878

Abstract: Properties of organic molecules adsorbed on metal surfaces are usually affected by the interaction with the substrate. There is a widespread belief that a thin dielectric layer between the molecular layer and the metal is sufficient for decoupling the former both physically and electronically. Using the example of perylenetetracarboxylic dianhydride on a bilayer of MgO on Ag(100), we show that this strategy is not always successful, as we observe a substantial charge transfer from the metal into the molecules. To avoid this, we suggest an alternative approach. Specifically, we deposit oxygen atoms on Cu(100) surface resulting in immobilization of the surface electrons in Cu-O bonds. This achieves a true electronic and physical decoupling. This mechanism of electronic surface hardening, proposed and demonstrated here by a combination of photoemission tomography, x-ray standing wave technique, and density functional calculations, is of general applicability as a strategy to decouple molecules from metals.

Subject Areas: Chemistry, Materials


Instruments: I09-Surface and Interface Structural Analysis