Article Metrics


Online attention

Intracoronal stress transfer through enamel following RBC photopolymerisation: A synchrotron X-ray study

DOI: 10.1016/ DOI Help

Authors: Maisoon Al-jawad (Queen Mary University of London) , Owen Addison (University of Birmingham; University of Alberta) , Slobodan Sirovica (Aston University) , Samera Siddiqui (Queen Mary University of London) , Richard A. Martin (Aston University) , David J. Wood (University of Leeds) , David Watts (University of Manchester)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Dental Materials

State: Published (Approved)
Published: August 2018
Diamond Proposal Number(s): 4016

Abstract: Objectives: To measure the spatial distribution of crystallographic strain in tooth enamel induced by the photo-polymerisation of a dimethacrylate resin based composite cavity restoration. Methods: Six sound first premolar teeth, allocated into two groups (n = 3), were prepared with mesio-occlusal distal cavities. The enamel was machined at the point of maximum convexity on the outer tooth to create a vertical fin of thickness 100 μm and 0.5 mm depth to allow for synchrotron X-ray diffraction measurements. 2D diffraction patterns were used to determine crystallite orientation and quantify changes in the hydroxyapatite crystal lattice parameters, before and after photo-polymerisation of a composite material placed in the cavity, to calculate strain in the respective axis. The composite was photo-polymerised with either relatively high (1200 mW cm−2, group 1) or low (480 mW cm−2, group 2) irradiances using LED or quartz halogen light sources, respectively. A paired t-test was used to determine significant differences in strain between irradiance protocols at ɑ = 0.001. Results: Photo-polymerisation of the composite in the adjacent cavity induced significant changes in both the crystallographic c and a axes of the enamel measurement area. However the magnitude of strain was low with ∼0.1% difference before and after composite photo-polymerisation. Strain in enamel was not uniformly distributed and varied spatially as a function of crystallite orientation. Increased alignment of crystallites perpendicular to the cavity wall was associated with higher c axis strain. Additionally, strain was significantly greater in the c (p < 0.001) and a axis (p < 0.001) when using a high irradiance photo-polymerisation protocol. Significance: Although cuspal deflection is routinely measured to indirectly assess the ‘global’ effect of composite shrinkage on the tooth-restoration complex, here we show that absolute strains generated in enamel are low, indicating strain relief mechanisms may be operative. The use of low irradiance protocols for photo-polymerisation resulted in reduced strain.

Journal Keywords: Synchrotron X-ray micro-focussed diffraction; Resin based composite; Photo-polymerisation; Enamel; Stress; Strain; Shrinkage

Subject Areas: Biology and Bio-materials
Collaborations: Diamond Manchester

Instruments: B16-Test Beamline