Publication

Article Metrics

Citations


Online attention

Confined Pt11+–water clusters in a MOF catalyze the low–temperature water–gas shift reaction with waterborne co2 oxygen atoms

DOI: 10.1002/anie.201810251 DOI Help

Authors: Emilio Pardo (Universitat de València) , Donatella Armentano (Università della Calabria) , Miguel A. Rivero–crespo (Universidad Politècnica de València) , Marta Mon Conejero (Universitat de València) , Jesus Ferrando-soria (Universitat de València) , Christian W. Lopes (Universidad Politècnica de València) , Mercedes Boronat (Universidad Politècnica de València) , Antonio Leyva–pérez (Universidad Politècnica de València) , Avelino Corma (Universidad Politècnica de València) , Juan C. Hernández–garrido (Universidad de Cádiz) , Miguel López–haro (Universidad de Cádiz) , Jose J. Calvino (Universidad de Cádiz) , Enrique V. Ramos–fernandez (Universidad de Alicante)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Angewandte Chemie International Edition

State: Published (Approved)
Published: November 2018
Diamond Proposal Number(s): 16033 , 18768

Abstract: The synthesis and reactivity of single metal atoms in low–valence state bound to just water, rather than to organic ligands or surfaces, is conceptually relevant and a major experimental challenge. Here, we show a gram–scale wet synthesis of a Pt11+ complex stabilized in a confined space by a water cluster, formed by a well–defined crystallographic first water sphere and a second coordination sphere linked to a Metal–Organic Framework (MOF) through electrostatic and H–bonding interactions. The role of the water cluster is not only isolating and stabilizing the Pt atoms, but also regulating the charge of the metal and the adsorption of reactants. This is shown for the low–temperature water–gas shift reaction (WGSR: CO + H2O → CO2 + H2), where both metal coordinated and H–bonded water molecules trigger a double water attack mechanism to CO and give CO2 with both oxygen atoms coming from water. The stabilized Pt1+ single sites in confined water clusters allow performing the WGSR at temperatures as low as 50 ºC.

Journal Keywords: MOFs; subNanometers Metal Clusters; Pt; Heterogeneous catalysis; single atom catalyst; metal-organic frameworks; platinum; water clusters; water-gas shift reaction

Subject Areas: Chemistry


Instruments: I19-Small Molecule Single Crystal Diffraction