Publication

Article Metrics

Citations


Online attention

Revealing the pH dependent activities and surface instabilities for Ni-based electrocatalysts during the oxygen evolution reaction

DOI: 10.1021/acsenergylett.8b01818 DOI Help

Authors: Chunzhen Yang (Chimie du Solide et de l’Energie, Collège de France) , Maria Batuk (EMAT, University of Antwerp) , Quentin Jacquet (Chimie du Solide et de l’Energie, Collège de France) , Gwenaëlle Rousse (Chimie du Solide et de l’Energie, Collège de France; Réseau sur le Stockage Electrochimique de l‘Energie (RS2E), CNRS; UPMC) , Wei Yin (Chimie du Solide et de l’Energie, Collège de France) , Leiting Zhang (Chimie du Solide et de l’Energie, Collège de France) , Joke Hadermann (EMAT, University of Antwerp) , Artem Abakumov (Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science) , Giannantonio Cibin (Diamond Light Source) , Alan Chadwick (University of Kent) , Jean-marie Tarascon (Chimie du Solide et de l’Energie, Collège de France; Réseau sur le Stockage Electrochimique de l‘Energie (RS2E), CNRS; UPMC; ALISTORE-European Research Institute) , Alexis Grimaud (Chimie du Solide et de l’Energie, Collège de France; Réseau sur le Stockage Electrochimique de l‘Energie (RS2E), CNRS; UPMC)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Acs Energy Letters

State: Published (Approved)
Published: November 2018
Diamond Proposal Number(s): 12559

Abstract: Multiple electrochemical processes are involved at the catalyst/electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3-δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni-Fe (oxy)hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM), coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) are conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike for amorphous Ni oxyhydroxide catalyst which is found more stable and pH independent.

Subject Areas: Chemistry, Energy


Instruments: B18-Core EXAFS