I24-Microfocus Macromolecular Crystallography
|
Abstract: The synthetic peptide Z‐Gly‐Aib‐Gly‐Aib‐Gly‐Aib‐OtBu was crystallized from a mixture of ethyl acetate and n‐hexane. The crystals belong to the centrosymmetric space group Pbca. There are three molecules in the asymmetric unit. The three molecules differ mainly in the Z‐group conformation. The first Gly residue adopts a fully extended conformation, residues 2 and 3 lie in the left‐handed helical region, residues 4 and 5 in the right‐handed helical region, and residue 6 again in the left‐handed helical region of the Ramachandran plot. There are only two of four possible intramolecular hydrogen bonds formed, namely, between Aib4 and Gly1 forming a β‐turn of type III′ and between Aib6 and Gly3 forming a β‐turn of type I. The inverted molecules (by space group symmetry) lie in the regions with opposite handedness and form β‐turns of type III and I′. In contrast to all known long synthetic and naturally occurring Aib‐containing peptides that fold as 310‐ or α‐helix, Z‐(Gly‐Aib)3‐OtBu folds in a quite flat structure from which only the protecting groups bulge out.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12633]
Abstract: We report an engineered panel of ene-reductases (ERs) from Thermus scotoductus SA-01 (TsER) that combines control over facial selectivity in the reduction of electron deficient Cdouble bondC double bonds with thermostability (up to 70 °C), organic solvent tolerance (up to 40 % v/v) and a broad substrate scope (23 compounds, three new to literature). Substrate acceptance and facial selectivity of 3-methylcyclohexenone was rationalized by crystallisation of TsER C25D/I67T and in silico docking. The TsER variant panel shows excellent enantiomeric excess (ee) and yields during bi-phasic preparative scale synthesis, with isolated yield of up to 93 % for 2R,5S-dihydrocarvone (3.6 g). Turnover frequencies (TOF) of approximately 40 000 h−1 were achieved, which are comparable to rates in hetero- and homogeneous metal catalysed hydrogenations. Preliminary batch reactions also demonstrated the reusability of the reaction system by consecutively removing the organic phase (n-pentane) for product removal and replacing with fresh substrate. Four consecutive batches yielded ca. 27 g L−1 R-levodione from a 45 mL aqueous reaction, containing less than 17 mg (10 μM) enzyme and the reaction only stopping because of acidification. The TsER variant panel provides a robust, highly active and stereocomplementary base for further exploitation as a tool in preparative organic synthesis.
|
Feb 2021
|
|
I19-Small Molecule Single Crystal Diffraction
|
Helen M.
O’connor
,
Sergio
Sanz
,
Aaron J.
Scott
,
Mateusz B.
Pitak
,
Wim T.
Klooster
,
Simon J.
Coles
,
Nicholas F.
Chilton
,
Eric J. L.
Mcinnes
,
Paul J.
Lusby
,
Høgni
Weihe
,
Stergios
Piligkos
,
Euan K.
Brechin
Open Access
Abstract: Three new heterometallic [CrIII8NiII6] coordination cubes of formulae [CrIII8NiII6L24(H2O)12](NO3)12 (1), [CrIII8NiII6L24(MeCN)7(H2O)5](ClO4)12 (2), and [CrIII8NiII6L24Cl12] (3) (where HL = 1-(4-pyridyl)butane-1,3-dione), were synthesised using the paramagnetic metalloligand [CrIIIL3] and the corresponding NiII salt. The magnetic skeleton of each capsule describes a face-centred cube in which the eight CrIII and six NiII ions occupy the eight vertices and six faces of the structure, respectively. Direct current magnetic susceptibility measurements on (1) reveal weak ferromagnetic interactions between the CrIII and NiII ions, with JCr-Ni = + 0.045 cm−1. EPR spectra are consistent with weak exchange, being dominated by the zero-field splitting of the CrIII ions. Excluding wheel-like structures, examples of large heterometallic clusters containing both CrIII and NiII ions are rather rare, and we demonstrate that the use of metalloligands with predictable bonding modes allows for a modular approach to building families of related polymetallic complexes. Compounds (1)–(3) join the previously published, structurally related family of [MIII8MII6] cubes, where MIII = Cr, Fe and MII = Cu, Co, Mn, Pd.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: A detailed understanding of the interactions between small-molecule ligands and their proposed binding targets is of the utmost importance for modern drug-development programs. Cellular retinoic acid-binding proteins I and II (CRABPI and CRABPII) facilitate a number of vital retinoid signalling pathways in mammalian cells and offer a gateway to manipulation of signalling that could potentially reduce phenotypes in serious diseases, including cancer and neurodegeneration. Although structurally very similar, the two proteins possess distinctly different biological functions, with their signalling influence being exerted through both genomic and nongenomic pathways. In this article, crystal structures are presented of the L29C mutant of Homo sapiens CRABPI in complex with naturally occurring fatty acids (1.64 Å resolution) and with the synthetic retinoid DC645 (2.41 Å resolution), and of CRABPII in complex with the ligands DC479 (1.80 Å resolution) and DC645 (1.71 Å resolution). DC645 and DC479 are two potential drug compounds identified in a recent synthetic retinoid development program. In particular, DC645 has recently been shown to have disease-modifying capabilities in neurodegenerative disease models by activating both genomic and nongenomic signalling pathways. These co-crystal structures demonstrate a canonical binding behaviour akin to that exhibited with all-trans-retinoic acid and help to explain how the compounds are able to exert an influence on part of the retinoid signalling cascade.
|
Feb 2021
|
|
B21-High Throughput SAXS
|
Xiaohu
Guo
,
Annika
Soderholm
,
Sandesh
Kanchugal Puttaswamy
,
Geir V
Isaksen
,
Omar
Warsi
,
Ulrich
Eckhard
,
Silvia
Triguis
,
Adolf
Gogoll
,
Jon
Jerlström-hultqvist
,
Johan
Åqvist
,
Dan I.
Andersson
,
Maria
Selmer
Diamond Proposal Number(s):
[11171]
Open Access
Abstract: The first S-adenosyl methionine (SAM) degrading enzyme (SAMase) was discovered in bacteriophage T3, as a counter-defense against the bacterial restriction-modification system, and annotated as a SAM hydrolase forming 5’-methyl-thioadenosine (MTA) and L-homoserine. From environmental phages, we recently discovered three SAMases with barely detectable sequence similarity to T3 SAMase and without homology to proteins of known structure. Here, we present the very first phage SAMase structures, in complex with a substrate analogue and the product MTA. The structure shows a trimer of alpha–beta sandwiches similar to the GlnB-like superfamily, with active sites formed at the trimer interfaces. Quantum-mechanical calculations, thin-layer chromatography, and nuclear magnetic resonance spectroscopy demonstrate that this family of enzymes are not hydrolases but lyases forming MTA and L-homoserine lactone in a unimolecular reaction mechanism. Sequence analysis and in vitro and in vivo mutagenesis support that T3 SAMase belongs to the same structural family and utilizes the same reaction mechanism.
|
Feb 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[19852, 21776]
Open Access
Abstract: We have previously reported the synthesis of thermoresponsive poly(stearyl methacrylate)-poly(benzyl methacrylate) [PSMA-PBzMA] diblock copolymer vesicles in mineral oil via polymerisation-induced self-assembly (PISA). Such vesicles undergo a vesicle-to-worm transition on heating, which provides an interesting new oil-thickening mechanism (see M. J. Derry, et al., Angew. Chem., 2017, 56, 1746–1750). In the present study, we report an unexpected reduction in dispersion viscosity when heating vesicles of approximately the same composition above a certain critical temperature. Transmission electron microscopy (TEM) studies indicate rich thermoresponsive behavior, with vesicles present at 20 °C, worms being formed at 130 °C and spheres generated at 180 °C, indicating that a worm-to-sphere transition occurs after the initial vesicle-to-worm transition. Moreover, we have also prepared a series of new thermoresponsive diblock copolymer vesicles by RAFT dispersion copolymerization of n-butyl methacrylate (BuMA) with benzyl methacrylate (BzMA) using a poly(stearyl methacrylate) precursor in mineral oil. This model system was developed to examine whether statistical copolymerization of a suitable comonomer (BuMA) could be used to tune the critical onset temperature required for the vesicle-to-worm transition. Indeed, oscillatory rheology studies confirmed that targeting membrane-forming blocks containing up to 50 mol% BuMA lowered the critical onset temperature required to induce the vesicle-to-worm transition to 109 °C, compared to 167 °C for the reference PSMA14-PBzMA125 diblock copolymer. Variable temperature small-angle X-ray scattering (SAXS) experiments confirmed a vesicle-to-worm transition, with the vesicles initially present at 20 °C being converted into worms when heated above 130 °C. Furthermore, a substantial reduction in dispersion viscosity was again observed when heating above the critical onset temperature. TEM and shear-induced polarized light imaging (SIPLI) studies indicate that linear worms are no longer present at 160 °C and 170 °C respectively, suggesting a subsequent worm-to-sphere transition. The thermal transitions studied herein proved to be irreversible on cooling on normal experimental timescales (hours).
|
Feb 2021
|
|
|
Open Access
Abstract: ecent advances in both experimental and computational techniques pose an exciting time for chemistry. Computational tools traditionally used to interpret experimental trends have now evolved into predictive models able to guide the design of novel catalysts. This review discusses the evolution of these models, as well as challenges and future avenues in the field of organocatalysis. Through representative examples we demonstrate how traditional physical organic chemistry tools in combination with machine learning models provide a powerful approach to achieve deeper understanding alongside greater predictive power.
|
Feb 2021
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23316, 17844, 13062]
Abstract: The human glucose transporters GLUT1 and GLUT3 have a central role in glucose uptake as canonical members of the Sugar Porter (SP) family. GLUT1 and GLUT3 share a fully conserved substrate-binding site with identical substrate coordination, but differ significantly in transport affinity in line with their physiological function. Here, we present a 2.4 Å crystal structure of GLUT1 in an inward open conformation and compare it with GLUT3 using both structural and functional data. Our work shows that interactions between a cytosolic “SP motif” and a conserved “A motif” stabilize the outward conformational state and increases substrate apparent affinity. Furthermore, we identify a previously undescribed Cl− ion site in GLUT1 and an endofacial lipid/glucose binding site which modulate GLUT kinetics. The results provide a possible explanation for the difference between GLUT1 and GLUT3 glucose affinity, imply a general model for the kinetic regulation in GLUTs and suggest a physiological function for the defining SP sequence motif in the SP family.
|
Feb 2021
|
|
I06-Nanoscience
|
Richard W.
Dawidek
,
Thomas J.
Hayward
,
Ian T.
Vidamour
,
Thomas J.
Broomhall
,
Guru
Venkat
,
Mohanad Al
Mamoori
,
Aidan
Mullen
,
Stephan J.
Kyle
,
Paul W.
Fry
,
Nina-juliane
Steinke
,
Joshaniel F. K.
Cooper
,
Francesco
Maccherozzi
,
Sarnjeet S.
Dhesi
,
Lucia
Aballe
,
Michael
Foerster
,
Jordi
Prat
,
Eleni
Vasilaki
,
Matthew O. A.
Ellis
,
Dan A.
Allwood
Diamond Proposal Number(s):
[24205]
Open Access
Abstract: Emergent behaviors occur when simple interactions between a system's constituent elements produce properties that the individual elements do not exhibit in isolation. This article reports tunable emergent behaviors observed in domain wall (DW) populations of arrays of interconnected magnetic ring‐shaped nanowires under an applied rotating magnetic field. DWs interact stochastically at ring junctions to create mechanisms of DW population loss and gain. These combine to give a dynamic, field‐dependent equilibrium DW population that is a robust and emergent property of the array, despite highly varied local magnetic configurations. The magnetic ring arrays’ properties (e.g., non‐linear behavior, “fading memory” to changes in field, fabrication repeatability, and scalability) suggest they are an interesting candidate system for realizing reservoir computing (RC), a form of neuromorphic computing, in hardware. By way of example, simulations of ring arrays performing RC approaches 100% success in classifying spoken digits for single speakers.
|
Feb 2021
|
|
Krios IV-Titan Krios IV at Diamond
|
Emma
Silvester
,
Benjamin
Vollmer
,
Vojtech
Prazak
,
Daven
Vasishtan
,
Emily A.
Machala
,
Catheryne
Whittle
,
Susan
Black
,
Jonathan
Bath
,
Andrew J.
Turberfield
,
Kay
Grunewald
,
Lindsay A.
Baker
Diamond Proposal Number(s):
[20223]
Open Access
Abstract: Electron cryotomography (cryoET), an electron cryomicroscopy (cryoEM) modality, has changed our understanding of biological function by revealing the native molecular details of membranes, viruses, and cells. However, identification of individual molecules within tomograms from cryoET is challenging because of sample crowding and low signal-to-noise ratios. Here, we present a tagging strategy for cryoET that precisely identifies individual protein complexes in tomograms without relying on metal clusters. Our method makes use of DNA origami to produce “molecular signposts” that target molecules of interest, here via fluorescent fusion proteins, providing a platform generally applicable to biological surfaces. We demonstrate the specificity of signpost origami tags (SPOTs) in vitro as well as their suitability for cryoET of membrane vesicles, enveloped viruses, and the exterior of intact mammalian cells.
|
Feb 2021
|
|