|
Abstract: For zeolite-type frameworks the focus has for a long time been put on producing new structures that can give optimized properties for a variety of different purposes. Many new structures have been produced on a trial and error basis. Open-framework germanates have played the role of forming many new structures as it is easier to form certain building units within the germanate system. It is time to start comparing synthesis mechanisms and building units to determine how we can control the synthesis. Here we will give an overview of some of the structures found within the open-framework germanate system and demonstrate that in order for more optimized systems to be synthesized there is a clear need for the more detailed comparison of the structural systematics of existing materials.
|
Apr 2010
|
|
|
|
Aug 2009
|
|
|
Abstract: Expressions for dichroic signals in terms of electron multipoles have been used to analyse optical data gathered on a crystal of copper metaborate in the presence of a magnetic field. Calculated signals comply with the established crystal and magnetic structures of CuB2O4, and respect the global symmetries of parity-even and parity-odd dichroic signals in full. We have success in describing five different experiments in total. The claim by Saito et al (2008 Phys. Rev. Lett. 101 117402) that they observe magnetic control of crystal chirality in one of their five experiments is challenged.
|
Apr 2009
|
|
|
Abstract: Bacteria are abundant in many natural and engineered environments where they are thought to exert important controls on the cycling, mobility, bioavailability, and toxicity of metal contaminants. In order to probe their role in moderating the behavior of lanthanides, pH-dependent adsorption edges of 13 individual lanthanides and yttrium to the Gram-negative bacterium Pantoea agglomerans were used to generate discrete site surface complexation constants. The calculated surface complexation constants were compared with stability constants estimated using linear free energy relationships based on a number of hydroxyl-containing ligands. The experimental data suggests that lanthanide adsorption edges below pH 6.5 are consistent with adsorption to phosphate groups for the light and some of the middle lanthanides (La to Gd), whereas some of the middle and heavy lanthanides appear to favor carboxyl co-ordination (Tb to Yb), although exceptions occur in each grouping. The experimentally derived surface complexation constants for carboxyl coordination were of similar magnitude to stability constants estimated from linear free energy correlations using fulvic acid stability constants. The implication is that the adsorption of lanthanides to bacterial surfaces could be modeled reasonably well using lanthanide stability constants for natural organic matter, except perhaps at low pH where phosphate binding dominates.
|
Jan 2010
|
|
|
|
Aug 2009
|
|
|
Paolo
Ruzza
,
Giuliano
Siligardi
,
Arianna
Donella-deana
,
Andrea
Calderan
,
Rohanah
Hussain
,
Chiara
Rubini
,
Luca
Cesaro
,
Alessio
Osler
,
Andrea
Guiotto
,
Lorenzo A.
Pinna
,
Gianfranco
Borin
Abstract: Eukaryotic signal transduction involves the assembly of transient protein-protein complexes mediated by modular interaction domains. Specific Pro-rich sequences with the consensus core motif PxxP adopt the PPII helix conformation upon binding to SH3 domains. For short Pro-rich peptides, little or no ordered secondary structure is usually observed before binding interactions. The association of a Pro-rich peptide with the SH3 domain involves unfavorable binding entropy due to the loss of rotational freedom on forming the PPII helix. With the aim of stabilizing the PPII helix conformation in the Pro-rich HPKI decapeptide PPPLPPKPKF (P2), a series of P2 analogues was prepared, in which specific Pro positions were alternatively occupied by 4(S)- or 4(R)-4-fluoro-L-proline. The interactions of these peptides with the SH3 domain of the HPK1-binding partner HS1 were quantitatively analyzed by the NILIA-CD approach. A CD thermal analysis of the P2 analogues was performed to assess their propensity to adopt the PPII helix conformation. Contrary to our expectations, the K-d values of the analogues were lower than that of the parent peptide P2. These results clearly show that the induction of a stable PPII helix conformation in short Pro-rich peptides is not sufficient to increase their affinity toward the SH3 domain and that the effect of 4-fluoroproline strongly depends on the position of this residue in the sequence and the chirality of the substituent in the pyrrolidine ring. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.
|
Jul 2006
|
|
|
Abstract: Hydrophilic carotenoids, unusual members of an intrinsically hydrophobic family, and their radical ions are important reactants. An all-optical method for generating singly charged radical ions of a hydrophilic carotenoid (Car) is described. It relies on photolyzing an aqueous mixture of Car and a photoionizable auxiliary solute (A), and making conditions conducive to the capture, by Car, of the hydrated electron (e?aq) or the positive hole in A?+ or both. When A is Trolox (TOH), only e?aq can be captured, since TOH?+ deprotonates too rapidly to be a hole donor; when A is Trolox methyl ether (TOMe), both Car?? and Car?+ are formed, since TOMe?+ lives long enough to transfer its positive hole to Car; formation of Car?? is prevented under aerobic conditions.
|
Aug 2009
|
|
|
Abstract: This workshop was held to gather scientists interested in exploiting beamlines I06 and I10 of the Surface and Interfaces Village at Diamond Light Source from June 10–11, 2009. Sarnjeet Dhesi introduced the meeting with a short explanation of the village structure at Diamond. This village includes the Nanoscience beamline (I06), catering for soft X-rays for Photo-Emission Electron Microscopy (PEEM) and X-ray Magnetic Circular and Linear Dichroism (XMCD and XMLD), and the Beam Line for Advanced Dichroism Experiments (BLADE, beamline I10), which is a polarized soft X-ray beam for XMCD, XMLD, and soft X-ray diffraction. I06 has been operational for over two years, while I10 is scheduled to come on-line in late 2010. In addition, there are two surface science beamlines (I07 and I09) in the village dedicated to surface diffraction and X-ray standing waves.
|
Sep 2009
|
|
|
|
Aug 2009
|
|
|
Abstract: This study was designed to combine surface complexation modelling of macroscopic adsorption data with X-ray Absorption Spectroscopic (XAS) measurements to identify lanthanide sorption sites on the bacterial surface. The adsorption of selected representatives for light (La and Nd), middle (Sm and Gd) and heavy (Er and Yb) lanthanides was measured as a function of pH, and biomass samples exposed to 4 mg/L lanthanide at pH 3.5 and 6 were analysed using XAS. Surface complexation modelling was consistent with the light lanthanides adsorbing to phosphate sites, whereas the adsorption of middle and heavy lanthanides could be modelled equally well by carboxyl and phosphate sites. The existence of such mixed mode coordination was confirmed by Extended X-ray Absorption Fine Structure (EXAFS) analysis, which was also consistent with adsorption to phosphate sites at low pH, with secondary involvement of carboxyl sites at high adsorption density (high pH). Thus, the two approaches yield broadly consistent information with regard to surface site identity and lanthanide coordination environment. Furthermore, spectroscopic analysis suggests that coordination to phosphate sites is monodentate at the metal/biomass ratios used. Based oil the best-fitting pK(a) site, we infer that the phosphate sites are located on N-acetylglucosamine phosphate, the most likely polymer on gram-negative cells with potential phosphate sites that deprotonate around neutral pH.
|
Jan 2009
|
|