DIAD-Dual Imaging and Diffraction Beamline
|
Diamond Proposal Number(s):
[30995]
Open Access
Abstract: The DIAD beamline for Dual Imaging and Diffraction at Diamond Light Source has opted to use an industrial robot to position its Dectris Pilatus 2M CdTe diffraction detector. This setup was chosen to enable flexible positioning of the detector in a quarter-sphere around the sample position whilst reliably holding the large weight of 139 kg of detector, detector mount and cabling in a stable position. Metrology measurements showed that the detector can be positioned with a linear repeatability of <19.7 µm and a rotational repeatability of <16.3 µrad. The detector position stays stable for a 12 h period with <10.1 µm of movement for linear displacement and <3.8 µrad for rotational displacement. X-ray diffraction from calibration samples confirmed that the robot is sufficiently stable to resolve lattice d-spacings within the instrumental broadening given by detector position and beam divergence.
|
Jul 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[20611]
Open Access
Abstract: The complex flow within the molten metallic pool, during advanced manufacturing and joining processes such as welding and additive manufacturing, directly affects the performance of the final components; through the generation of various microstructures and strain gradients. Understanding of the flow within such melt pools can enhance the predictability of the final microstructures and therefore component performance. In situ synchrotron X-ray imaging is employed to observe and map the evolving flow patterns within gas tungsten arc weld pools using tracking particles. The experimentally observed flow patterns are compared with numerical simulations to gain additional insights on accurate predictability in relevance to the physical driving forces within the flow. The spatio-temporal distribution of the flow using the mapped data is analyzed by considering the evolution of driving forces acting throughout the weld pool. The results demonstrate quantitative benchmark flow mapping with confirmation of the overall mechanisms of weld pool flow.
|
Nov 2021
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Christina
Reinhard
,
Michael
Drakopoulos
,
Sharif I.
Ahmed
,
Hans
Deyhle
,
Andrew
James
,
Christopher M.
Charlesworth
,
Martin
Burt
,
John
Sutter
,
Steven
Alexander
,
Peter
Garland
,
Thomas
Yates
,
Russell
Marshall
,
Ben
Kemp
,
Edmund
Warrick
,
Armando
Pueyos
,
Ben
Bradnick
,
Maurizio
Nagni
,
A. Douglas
Winter
,
Jacob
Filik
,
Mark
Basham
,
Nicola
Wadeson
,
Oliver N. F.
King
,
Navid
Aslani
,
Andrew J.
Dent
Open Access
Abstract: The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source is a new dual-beam instrument for full-field imaging/tomography and powder diffraction. This instrument provides the user community with the capability to dynamically image 2D and 3D complex structures and perform phase identification and/or strain mapping using micro-diffraction. The aim is to enable in situ and in operando experiments that require spatially correlated results from both techniques, by providing measurements from the same specimen location quasi-simultaneously. Using an unusual optical layout, DIAD has two independent beams originating from one source that operate in the medium energy range (7–38 keV) and are combined at one sample position. Here, either radiography or tomography can be performed using monochromatic or pink beam, with a 1.4 mm × 1.2 mm field of view and a feature resolution of 1.2 µm. Micro-diffraction is possible with a variable beam size between 13 µm × 4 µm and 50 µm × 50 µm. One key functionality of the beamline is image-guided diffraction, a setup in which the micro-diffraction beam can be scanned over the complete area of the imaging field-of-view. This moving beam setup enables the collection of location-specific information about the phase composition and/or strains at any given position within the image/tomography field of view. The dual beam design allows fast switching between imaging and diffraction mode without the need of complicated and time-consuming mode switches. Real-time selection of areas of interest for diffraction measurements as well as the simultaneous collection of both imaging and diffraction data of (irreversible) in situ and in operando experiments are possible.
|
Nov 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[22109, 24740, 14033, 19526, 21999]
Open Access
Abstract: Parallel-beam tomography systems at synchrotron facilities have limited field of view (FOV) determined by the available beam size and detector system coverage. Scanning the full size of samples bigger than the FOV requires various data acquisition schemes such as grid scan, 360-degree scan with offset center-of-rotation (COR), helical scan, or combinations of these schemes. Though straightforward to implement, these scanning techniques have not often been used due to the lack of software and methods to process such types of data in an easy and automated fashion. The ease of use and automation is critical at synchrotron facilities where using visual inspection in data processing steps such as image stitching, COR determination, or helical data conversion is impractical due to the large size of datasets. Here, we provide methods and their implementations in a Python package, named Algotom, for not only processing such data types but also with the highest quality possible. The efficiency and ease of use of these tools can help to extend applications of parallel-beam tomography systems.
|
May 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
W. U.
Mirihanage
,
J. D.
Robson
,
S.
Mishra
,
P.
Hidalgo-Manrique
,
J.
Quinta Da Fonseca
,
C. S.
Daniel
,
P. B.
Prangnell
,
S.
Michalik
,
O. V.
Magdysyuk
,
T.
Connolley
,
M.
Drakopoulos
Diamond Proposal Number(s):
[13828]
Open Access
Abstract: An improved understanding of the phenomenon of dynamic precipitation is important to accurately model and simulate many industrial manufacturing processes with high strength Al-alloys. Dynamic ageing in 7xxx Al-alloys can occur as a result of both the strain and heat. Small angle X-ray scattering (SAXS) is an advanced technique that allows the precipitation processes to be studied in situ, but to date this has only been possible at lower than industrially relevant strain rates (e.g. < 10−3). In this contribution, we demonstrate the potential of in-situ SAXS studies of metallic alloys at higher strain rates (10−2) than previously, using a high energy synchrotron X-ray. The time resolved SAXS information has been used to evaluate dynamic precipitate evolution models and has demonstrated that at high strain rates a new regime must be considered which includes the more significant effect of vacancy annihilation, leading to a clear strain rate, rather than just strain, kinetic dependence.
|
Dec 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[14465, 16332]
Abstract: Detailed information on the atomic arrangement of glassy Cu54Hf46, Cu61Hf39 and Cu69Hf31 alloys has been obtained by the reverse Monte Carlo (RMC) simulation using high-energy X-ray diffraction and neutron diffraction data as input. Dominant cluster units are identified by means of the radical Voronoï tessellation technique. Cu-centred clusters show a stronger ordering level than the Hf-centred ones. Results are compared with those previously reported for analogous binary amorphous systems such as Zr–Cu and Zr–Ni. Additionally, the thermal stability of the studied Cu–Hf alloys has been inspected by in-situ high-temperature X-ray diffraction and differential scanning calorimetry measurements. A different structural evolution is observed for Cu69Hf31 compared with Cu54Hf46 and Cu61Hf39. Products of devitrification are identified and quantified. The better glass forming ability of Cu54Hf46 and Cu61Hf39 compared with Cu69Hf31 is explained in the view of short range order differences of glassy states and corresponding crystalline phases formed during devitrification.
|
Aug 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[20611]
Open Access
Abstract: Metallic alloys coalesce via extremely rapid melting and subsequent solidification to form fusion welded joints. The melt pool evolution in melting and solidification sequences during the welding process determines the formation of the final weld joint shape, microstructure and defects. The scientific insight on weld pool evolution and related phenomena can be a key contribution to enhance structural integrity and resilience of the welded structures or components. However, inherent complexity with multi-physics phenomena, associated high temperatures and the rapidness of the processes make direct experimental investigation of welding is extremely demanding. Thus, internal flow behaviour during welding or other melt-pool-based metal processing such as additive manufacturing remains unclear and hinders progression to process optimisation. In this contribution we report the observation of melt pool dynamics that take place during electric arc welding, obtained through in situ synchrotron imaging at millisecond scale. The analysis flow patterns along with the quantified weld pool surface dynamics revealed us to how different contributing forces dictate the flow conditions over the distinct durations of the relatively short existence of the liquid phase. Our preliminary results suggest the existence of arc, surface tension and gravity dominant regimes during the evaluation of the weld pool. Further, we present our observations on how different welding parameters influence these regimes and develop into different transient conditions.
|
May 2020
|
|
B16-Test Beamline
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[20611, 19595]
Open Access
Abstract: The flow within the melt pool during welding is a major factor that dictates the formation of the final fusion zone shape, solidification microstructure and defects. In this paper, we report the evolution sequence of the arc weld pool flow that observed via fast in-situ synchrotron X-ray imaging. Varying flow regimes attribute to the dominance of characteristic forces within the weld pool during rapid solid-liquid-solid phase transformation. Our analysis indicates the general sequence in the arc, surface tension and gravity driven force domination. Welding process parameters appear to influence significantly in determining the domination interval and the intensity of individual force. In some instances, arc and surface tension driven forces can prevent pores, which causes porosity in final welded structures, escaping from the melt pool. Preliminary relations between power input levels, diffract force domination regimes, flow patterns and pool surface changes in fusion welds are suggested by considering the behavior of multiple weld pools.
|
Feb 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Harry G. W.
Godfrey
,
Lydia
Briggs
,
Xue
Han
,
William J. F.
Trenholme
,
Christopher
Morris
,
Mathew
Savage
,
Louis
Kimberley
,
Oxana
Magdysyuk
,
Michael
Drakopoulos
,
Claire A.
Murray
,
Chiu C.
Tang
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[11278]
Open Access
Abstract: Understanding the mechanism of assembly and function of metal-organic frameworks (MOFs) is important for the development of practical materials. Herein, we report a time-resolved diffraction analysis of the kinetics of formation of a robust MOF, MFM-300(Fe), which shows high adsorption capacity for CO2 (9.55 mmol g−1 at 293 K and 20 bar). Applying the Avrami-Erofe’ev and the two-step kinetic Finke-Watzky models to in situ high-energy synchrotron X-ray powder diffraction data obtained during the synthesis of MFM-300(Fe) enables determination of the overall activation energy of formation (50.9 kJ mol−1), the average energy of nucleation (56.7 kJ mol−1), and the average energy of autocatalytic growth (50.7 kJ mol−1). The synthesis of MFM-300(Fe) has been scaled up 1000-fold, enabling the successful breakthrough separations of the CO2/N2 mixture in a packed-bed with a selectivity for CO2/N2 of 21.6. This study gives an overall understanding for the intrinsic behaviors of this MOF system, and we have determined directly the binding domains and dynamics for adsorbed CO2 molecules within the pores of MFM-300(Fe).
|
Nov 2019
|
|
Data acquisition
|
A. D.
Parsons
,
S.
Ahmed
,
M.
Basham
,
D.
Bond
,
B.
Bradnick
,
M.
Burt
,
T.
Cobb
,
N.
Dougan
,
M.
Drakopoulos
,
F.
Ferner
,
J.
Filik
,
C.
Forrester
,
L.
Hudson
,
P.
Joyce
,
B.
Kaulich
,
A.
Kavva
,
J.
Kelly
,
J.
Mudd
,
B.
Nutter
,
P.
Quinn
,
K.
Ralphs
,
C.
Reinhard
,
J.
Shannon
,
M.
Taylor
,
T.
Trafford
,
X.
Tran
,
E.
Warrick
,
A.
Wilson
,
A. D.
Winter
Open Access
Abstract: We present a beamline analogue, capable of system pro- totyping, integrated development and testing, specifically designed to provide a facility for full scientific testing of instrument prototypes. With an identical backend to real beamline instruments the P99 development rig has allowed increased confidence and troubleshooting ahead of final scientific commissioning. We present detail of the software and hardware components of this environment and how these have been used to develop functionality for the new operational instruments. We present several high impact examples of such integrated prototyping development in- cluding the instrumentation for DIAD (integrated Dual Im- aging And Diffraction) and the J08 (Soft X-ray ptychogra- phy) beamline end station.
|
Oct 2019
|
|