I08-1-Soft X-ray Ptychography
|
Jeffrey
Neethirajan
,
Benedikt J,
Daurer
,
Marisel
Di Pietro Martinez
,
Ales
Hrabec
,
Luke
Turnbull
,
Rikako
Yamamoto
,
Marina
Raboni Ferreira
,
Ales
Stefancic
,
Daniel A.
Mayoh
,
Geetha
Balakrishnan
,
Zhaowen
Pei
,
Pengfei
Xue
,
Liao
Chang
,
Emilie
Ringe
,
Richard
Harrison
,
Sergio
Valencia
,
Majid
Kazemian
,
Burkhard
Kaulich
,
Claire
Donnelly
Diamond Proposal Number(s):
[32984, 33254]
Open Access
Abstract: Imaging of nanoscale magnetic textures within extended material systems is of critical importance to both fundamental research and technological applications. While high-resolution magnetic imaging of thin nanoscale samples is well established with electron and soft x-ray microscopy, the extension to micrometer-thick systems currently requires hard x rays, which limits high-resolution imaging to rare-earth magnets. Here, we overcome this limitation by establishing soft x-ray magnetic imaging of micrometer-thick systems using the pre-edge phase x-ray magnetic circular dichroism signal, thus making possible the study of a wide range of magnetic materials. By performing dichroic spectroptychography, we demonstrate high spatial resolution imaging of magnetic samples up to 1.7 μm thick, an order of magnitude higher than conventionally possible with soft x-ray absorption-based techniques. We demonstrate the applicability of the technique by harnessing the pre-edge phase to image thick chiral helimagnets, and naturally occurring magnetite particles, gaining insight into their three-dimensional magnetic configuration. This new regime of magnetic imaging makes possible the study of extended non-rare-earth systems that have until now been inaccessible, including magnetic textures for future spintronic applications, non-rare-earth permanent magnets for energy harvesting, and the magnetic configuration of giant magnetofossils.
|
Aug 2024
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Edward
Harding
,
Tohru
Araki
,
Joseph
Askey
,
Matthew
Hunt
,
Arjen
Van Den Berg
,
David
Raftrey
,
Lucia
Aballe
,
Burkhard
Kaulich
,
Emyr
Macdonald
,
Peter
Fischer
,
Sam
Ladak
Open Access
Abstract: Artificial spin-ice systems are patterned arrays of magnetic nanoislands arranged into frustrated geometries and provide insight into the physics of ordering and emergence. The majority of these systems have been realized in two-dimensions, mainly due to the ease of fabrication, but with recent developments in advanced nanolithography, three-dimensional artificial spin ice (ASI) structures have become possible, providing a new paradigm in their study. Such artificially engineered 3D systems provide new opportunities in realizing tunable ground states, new domain wall topologies, monopole propagation, and advanced device concepts, such as magnetic racetrack memory. Direct imaging of 3DASI structures with magnetic force microscopy has thus far been key to probing the physics of these systems but is limited in both the depth of measurement and resolution, ultimately restricting measurement to the uppermost layers of the system. In this work, a method is developed to fabricate 3DASI lattices over an aperture using two-photon lithography, thermal evaporation, and oxygen plasma exposure, allowing the probe of element-specific structural and magnetic information using soft x-ray microscopy with x-ray magnetic circular dichroism (XMCD) as magnetic contrast. The suspended polymer–permalloy lattices are found to be stable under repeated soft x-ray exposure. Analysis of the x-ray absorption signal allows the complex cross section of the magnetic nanowires to be reconstructed and demonstrates a crescent-shaped geometry. Measurement of the XMCD images after the application of an in-plane field suggests a decrease in magnetic moment on the lattice surface due to oxidation, while a measurable signal is retained on sub-lattices below the surface.
|
Feb 2024
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Karin
Eusterhues
,
Juergen
Thieme
,
Sneha
Narvekar
,
Tohru
Araki
,
Majid
Kazemian
,
Burkhard
Kaulich
,
Tom
Regier
,
Jian
Wang
,
Johann
Lugmeier
,
Carmen
Höschen
,
Tim
Mansfeldt
,
Kai Uwe
Totsche
Diamond Proposal Number(s):
[18569]
Abstract: Sorption of organic molecules on mineral surfaces can occur through several binding mechanisms of varying strength. Here, we investigated the importance of inner-sphere P-O-Fe bonds in synthetic and natural mineral-organic associations. Natural organic matter such as water extracted soil organic matter (WESOM) and extracellular polymeric substances (EPS) from liquid bacterial cultures were adsorbed to goethite and examined by FTIR spectroscopy and P K-edge NEXAFS spectroscopy. Natural particles from a Bg soil horizon (Gleysol) were subjected to X-ray fluorescence (XRF) mapping, NanoSIMS imaging, and NEXAFS spectro-microscopy at the P K-edge. Inner-sphere P-O-Fe bonds were identified for both, adsorbed EPS extracts and adsorbed WESOMs. Characteristic infrared peaks for P-O-Fe stretching vibrations are present but cannot unambiguously be interpreted due to possible interferences with mono- and polysaccharides. For the Bg horizon, P was only found on Fe oxides, covering the entire surface at different concentrations, but not on clay minerals. Linear combination fitting of NEXAFS spectra indicates that this adsorbed P is mainly a mixture of orthophosphate and organic P compounds. By combining atomic force microscopy (AFM) images with STXM-generated C and Fe distribution maps, we show that the Fe oxide surfaces were fully coated with organic matter. In contrast, clay minerals revealed a much lower C signal. The C NEXAFS spectra taken on the Fe oxides had a substantial contribution of carboxylic C, aliphatic C, and O-alkyl C, which is a composition clearly different from pure adsorbed EPS or aromatic-rich lignin-derived compounds. Our data show that inner-sphere P-O-Fe bonds are important for the association of Fe oxides with soil organic matter. In the Bg horizon, carboxyl groups and orthophosphate compete with the organic P compounds for adsorption sites.
|
Sep 2023
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Oliver W.
Moore
,
Lisa
Curti
,
Clare
Woulds
,
James A.
Bradley
,
Peyman
Babakhani
,
Benjamin J. W.
Mills
,
William B.
Homoky
,
Ke-Qing
Xiao
,
Andrew W.
Bray
,
Ben J.
Fisher
,
Majid
Kazemian
,
Burkhard
Kaulich
,
Andrew W.
Dale
,
Caroline L.
Peacock
Diamond Proposal Number(s):
[18560, 21323]
Open Access
Abstract: The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2,3,4,5,6,7,8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11,12,13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr−1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr−1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time.
|
Aug 2023
|
|
I08-1-Soft X-ray Ptychography
I14-Hard X-ray Nanoprobe
|
Cyril
Besnard
,
Ali
Marie
,
Sisini
Sasidharan
,
Petr
Buček
,
Jessica
Walker
,
Julia E.
Parker
,
Thomas E. J.
Moxham
,
Benedikt
Daurer
,
Burkhard
Kaulich
,
Majid
Kazemian
,
Richard M.
Shelton
,
Gabriel
Landini
,
Alexander M.
Korsunsky
Diamond Proposal Number(s):
[30684, 31005]
Open Access
Abstract: This study reports the characterisation of human dental enamel caries using synchrotron nanoscale correlative ptychography and spectroscopic mapping in combination with scanning electron microscopy. A lamella ̴2.4 µm thick was extracted from a carious enamel region of a tooth using focused ion beam-scanning electron microscopy and transferred to two synchrotron beamlines to perform hard X-ray nano-fluorescence spectroscopy simultaneously with differential phase contrast mapping at a beam size of 50 nm. Soft X-ray ptychography data was then reconstructed with a pixel size of 8 nm. The two dimensional variation in chemistry and structure of carious enamel was revealed at the nanoscale, namely, the organisation of hydroxyapatite nano-crystals within enamel rods was imaged together with the inter-rod region. Correlative use of electron and X-ray scanning microscopies for the same sample allowed visualisation of the connection between structure and composition as presented in a compound image where colour indicates the relative calcium concentration in the sample, as indicated by the calcium Kα fluorescence intensity and grey scale shows the nanostructure. This highlights the importance of advanced correlative imaging to investigate the complex structure-composition relationships in nanomaterials of natural or artificial origin.
|
Oct 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
I18-Microfocus Spectroscopy
|
Agnieszka
Dybowska
,
Paul
Schofield
,
Laura
Newsome
,
Richard
Herrington
,
Julian F. W.
Mosselmans
,
Burkhard
Kaulich
,
Majid
Kazemian
,
Tohru
Araki
,
Thomas J.
Skiggs
,
Jens
Kruger
,
Anne
Oxley
,
Rachel L.
Norman
,
Jonathan R.
Lloyd
Diamond Proposal Number(s):
[14882, 14908, 17882]
Open Access
Abstract: The Piauí laterite (NE Brazil) was initially evaluated for Ni but also contains economic concentrations of Co. Our investigations aimed to characterise the Co enrichment within the deposit; by understanding the mineralogy we can better design mineral processing to target Co recovery. The laterite is heterogeneous on the mineralogical and lithological scale differing from the classic schematic profiles of nickel laterites, and while there is a clear transition from saprolite to more ferruginous units, the deposit also contains lateral and vertical variations that are associated with both the original intrusive complex and also the nature of fluid flow, redox cycling and fluctuating groundwater tables. The deposit is well described by the following six mineralogical and geochemical units: SAPFE, a clay bearing ferruginous saprolite; SAPSILFE, a silica dominated ferruginous saprolite; SAPMG, a green magnesium rich chlorite dominated saprolite; SAPAL, a white-green high aluminium, low magnesium saprolite; saprock, a serpentine and chlorite dominated saprolite and the serpentinite protolith. Not all of these units are ‘ore bearing’. Ni is concentrated in a range of nickeliferous phyllosilicates (0.1–25 wt%) including serpentines, talc and pimelite, goethite (up to 9 wt%), magnetite (2.8–14 wt%) and Mn oxy-hydroxides (0.35–19 wt%). Lower levels of Ni are present in ilmenites, chromites, chlorite and distinct small horizons of nickeliferous silica (up to 3 wt% Ni). With respect to Co, the only significant chemical correlation is with Mn, and Mn oxy-hydroxides contain up to 14 wt% Co. Cobalt is only present in goethite when Mn is also present, and these goethite grains contain an average of 0.19 wt% Co (up to a maximum of 0.65 wt%). The other main Co bearing minerals are magnetite (0.41–1.89 wt%), chlorite (up to 0.45 wt%) and ilmenite (up to 0.35 wt%). Chemically there are three types of Mn oxy-hydroxide, asbolane, asbolane-lithiophorite intermediates and romanechite. Spatially resolved X-ray absorption spectroscopy analysis suggests that the Co is present primarily as octahedrally bound Co3+ substituted directly into the MnO6 layers of the asbolane-lithiophorite intermediates. However significant levels of Co2+ are evident within the asbolane-lithiophorite intermediates, structurally bound along with Ni in the interlayer between successive MnO6 layers. The laterite microbial community contains prokaryotes and few fungi, with the highest abundance and diversity closest to ground level. Microorganisms capable of metal redox cycling were identified to be present, but microcosm experiments of different horizons within the deposit demonstrated that stimulated biogeochemical cycling did not contribute to Co mobilisation. Correlations between Co and Mn are likely to be a relic of parent rock weathering rather than due to biogeochemical processes; a conclusion that agrees well with the mineralogical associations.
|
Oct 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Dawn M.
Buchanan
,
Laura
Newsome
,
Jonathan R.
Lloyd
,
Majid
Kazemian
,
Burkhard
Kaulich
,
Tohru
Araki
,
Heath
Bagshaw
,
John
Waters
,
Gerrit
Van Der Laan
,
Alpha
N’diaye
,
Victoria S.
Coker
Diamond Proposal Number(s):
[17626]
Open Access
Abstract: Cobalt is an essential element for life and plays a crucial role in supporting the drive to clean energy, due to its importance in rechargeable batteries. Co is often associated with Fe in the environment, but the fate of Co in Fe-rich biogeochemically-active environments is poorly understood. To address this, synchrotron-based scanning X-ray microscopy (SXM) was used investigate the behaviour of cobalt at the nanoscale in Co-Fe(III)-oxyhydroxides undergoing microbial reduction. SXM can assess spatial changes in metal speciation and organic compounds helping to elucidate the electron transfer processes occurring at the cell-mineral interface and inform on the fate of cobalt in redox horizons. G. sulfurreducens was used to reduce synthetic Co-ferrihydrite as an analogue of natural cobalt-iron-oxides. Magnetite [Fe(II)/Fe(III)3O4] production was confirmed by powder X-ray diffraction (XRD), SXM and X-ray magnetic circular dichroism (XMCD) data, where best fits of the latter suggested Co-bearing magnetite. Macro-scale XAS techniques suggested Co(III) reduction occurred and complementary SXM at the nanoscale, coupled with imaging, found localised biogenic Co(III) reduction at the cell-mineral interface via direct contact with outer membrane cytochromes. No discernible localised changes in Fe speciation were detected in the reordered cobalt-iron-oxides that were formed and at the end point of the experiment only 11% Co and 1.5% Fe had been solubilised. The solid phase retention, alongside the highly localised and preferential cobalt bioreduction observed at the nanoscale is consistent with retention of Co in redox zones. This work improves our fundamental molecular-scale understanding of the fate of Co in complex environmental systems and supports the development of biogenic Co-doped magnetite for industrial applications from drug delivery systems to magnetic recording media.
|
May 2022
|
|
I08-1-Soft X-ray Ptychography
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[22398]
Open Access
Abstract: Sustainability, environmental and safety concerns raised by the increasing demand of batteries are driving research towards post-lithium technologies. Rechargeable Zn batteries are strong candidates, but still not practically viable, owing to the extensively studied, but poorly understood unstable behavior of Zn metal upon discharge-charge cycling. This limiting factor warrants more fundamental investigations and the present report provides the lacking molecular-level information on the Zn-based compounds forming at the electrode/electrolyte interface as a result of electrochemical cyclic in weakly acidic aqueous electrolyte. The results are obtained using ex situ X-ray absorption spectromicroscopy maps, modelled mathematically and complemented with cyclic voltammetry, symmetric-cell tests and electron microscopy. We have identified the role of the zincate precipitation resulting from local alkalinization during recharge, combined with additional zincate formation and decomposition to zinc oxide during discharge. The mathematical model allowed a transparent interpretation of morphochemical changes observed. The synergy of these processes leads to electrochemical localization effects, resulting in the formation of a complexly structured and low conductive ZnO-based template, that might play a role in driving shape changes.
|
Mar 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[21323, 20839, 23049]
Open Access
Abstract: The coprecipitation of organic carbon with iron minerals is important for its preservation in soils and sediments, but the mechanisms for carbon-iron interactions and thus the controls on organic carbon cycling are far from understood. Here we coprecipitate carboxylic acids with iron (oxyhydr)oxide ferrihydrite and use near-edge X-ray absorption fine structure spectroscopy and wet chemical treatments to determine the relationship between sequestration mechanism and organic carbon stability against its release and chemical oxidative remineralisation. We show that organic carbon sequestration, stabilisation and persistence increase with an increasing number of carboxyl functional groups. We suggest that carboxyl-richness provides an important control on organic carbon preservation in the natural environment. Our work offers a mechanistic basis for understanding the stability and persistence of organic carbon in soils and sediments, which might be used to develop an overarching relationship between organic functional group-richness, mineral interactions and organic carbon preservation in the Earth system.
|
Nov 2021
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Open Access
Abstract: This study explores the delivery of phosphorus to the upper atmospheres of Earth, Mars, and Venus via the ablation of cosmic dust particles. Micron-size meteoritic particles were flash heated to temperatures as high as 2900 K in a Meteor Ablation Simulator (MASI), and the ablation of PO and Ca recorded simultaneously by laser induced fluorescence. Apatite grains were also ablated as a reference. The speciation of P in anhydrous chondritic porous Interplanetary Dust Particles was made by K-edge X-ray absorption near edge structure (XANES) spectroscopy, demonstrating that P mainly occurs in phosphate-like domains. A thermodynamic model of P in a silicate melt was then developed for inclusion in the Leeds Chemical Ablation Model (CABMOD). A Regular Solution model used to describe the distribution of P between molten stainless steel and a multicomponent slag is shown to provide the most accurate solution for a chondritic-composition, and reproduces satisfactorily the PO ablation profiles observed in the MASI. Meteoritic P is moderately volatile and ablates before refractory metals such as Ca; its ablation efficiency in the upper atmosphere is similar to Ni and Fe. The speciation of evaporated P depends significantly on the oxygen fugacity, and P should mainly be injected into planetary upper atmospheres as PO2, which will then likely undergo dissociation to PO (and possibly P) through hyperthermal collisions with air molecules. The global P ablation rates are estimated to be 0.017 t d−1 (tonnes per Earth day), 1.15 × 10−3 t d−1 and 0.024 t d−1 for Earth, Mars and Venus, respectively.
|
Apr 2020
|
|