I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Maurice
Michel
,
Carlos
Benítez-Buelga
,
Patricia A.
Calvo
,
Bishoy M. F.
Hanna
,
Oliver
Mortusewicz
,
Geoffrey
Masuyer
,
Jonathan
Davies
,
Olov
Wallner
,
Sanjiv
Kumar
,
Julian J.
Albers
,
Sergio
Castañeda-Zegarra
,
Ann-Sofie
Jemth
,
Torkild
Visnes
,
Ana
Sastre-Perona
,
Akhilesh N.
Danda
,
Evert J.
Homan
,
Karthick
Marimuthu
,
Zhao
Zhenjun
,
Celestine N.
Chi
,
Antonio
Sarno
,
Elisée
Wiita
,
Catharina
Von Nicolai
,
Anna J.
Komor
,
Varshni
Rajagopal
,
Sarah
Müller
,
Emily C.
Hank
,
Marek
Varga
,
Emma R.
Scaletti
,
Monica
Pandey
,
Stella
Karsten
,
Hanne
Haslene-Hox
,
Simon
Loevenich
,
Petra
Marttila
,
Azita
Rasti
,
Kirill
Mamonov
,
Florian
Ortis
,
Fritz
Schömberg
,
Olga
Loseva
,
Josephine
Stewart
,
Nicholas
D’arcy-Evans
,
Tobias
Koolmeister
,
Martin
Henriksson
,
Dana
Michel
,
Ana
De Ory
,
Lucia
Acero
,
Oriol
Calvete
,
Martin
Scobie
,
Christian
Hertweck
,
Ivan
Vilotijevic
,
Christina
Kalderén
,
Ana
Osorio
,
Rosario
Perona
,
Alexandra
Stolz
,
Pal
Stenmark
,
Ulrika
Warpman Berglund
,
Miguel
De Vega
,
Thomas
Helleday
Diamond Proposal Number(s):
[15806, 21625]
Abstract: Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed β,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Nadilly
Bonagas
,
Nina M. S.
Gustafsson
,
Martin
Henriksson
,
Petra
Marttila
,
Robert
Gustafsson
,
Elisée
Wiita
,
Sanjay
Borhade
,
Alanna C.
Green
,
Karl S. A.
Vallin
,
Antonio
Sarno
,
Richard
Svensson
,
Camilla
Göktürk
,
Therese
Pham
,
Ann-Sofie
Jemth
,
Olga
Loseva
,
Victoria
Cookson
,
Nicole
Kiweler
,
Lars
Sandberg
,
Azita
Rasti
,
Judith E.
Unterlass
,
Martin
Haraldsson
,
Yasmin
Andersson
,
Emma R.
Scaletti
,
Christoffer
Bengtsson
,
Cynthia B. J.
Paulin
,
Kumar
Sanjiv
,
Eldar
Abdurakhmanov
,
Linda
Pudelko
,
Ben
Kunz
,
Matthieu
Desroses
,
Petar
Iliev
,
Katarina
Färnegårdh
,
Andreas
Krämer
,
Neeraj
Garg
,
Maurice
Michel
,
Sara
Häggblad
,
Malin
Jarvius
,
Christina
Kalderén
,
Amanda Bögedahl
Jensen
,
Ingrid
Almlöf
,
Stella
Karsten
,
Si Min
Zhang
,
Maria
Häggblad
,
Anders
Eriksson
,
Jianping
Liu
,
Björn
Glinghammar
,
Natalia
Nekhotiaeva
,
Fredrik
Klingegård
,
Tobias
Koolmeister
,
Ulf
Martens
,
Sabin
Llona-Minguez
,
Ruth
Moulson
,
Helena
Nordström
,
Vendela
Parrow
,
Leif
Dahllund
,
Birger
Sjöberg
,
Irene L.
Vargas
,
Duy Duc
Vo
,
Johan
Wannberg
,
Stefan
Knapp
,
Hans E.
Krokan
,
Per I.
Arvidsson
,
Martin
Scobie
,
Johannes
Meiser
,
Pal
Stenmark
,
Ulrika Warpman
Berglund
,
Evert J.
Homan
,
Thomas
Helleday
Open Access
Abstract: The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.
|
Feb 2022
|
|
I04-Macromolecular Crystallography
|
Torkild
Visnes
,
Carlos
Benítez-Buelga
,
Armando
Cázares-Körner
,
Kumar
Sanjiv
,
Bishoy M. F.
Hanna
,
Oliver
Mortusewicz
,
Varshni
Rajagopal
,
Julian J.
Albers
,
Daniel W
Hagey
,
Tove
Bekkhus
,
Saeed
Eshtad
,
Juan Miguel
Baquero
,
Geoffrey
Masuyer
,
Olov
Wallner
,
Sarah
Müller
,
Therese
Pham
,
Camilla
Göktürk
,
Azita
Rasti
,
Sharda
Suman
,
Raúl
Torres-Ruiz
,
Antonio
Sarno
,
Elisée
Wiita
,
Evert J.
Homan
,
Stella
Karsten
,
Karthick
Marimuthu
,
Maurice
Michel
,
Tobias
Koolmeister
,
Martin
Scobie
,
Olga
Loseva
,
Ingrid
Almlöf
,
Judith Edda
Unterlass
,
Aleksandra
Pettke
,
Johan
Boström
,
Monica
Pandey
,
Helge
Gad
,
Patrick
Herr
,
Ann-Sofie
Jemth
,
Samir
El andaloussi
,
Christina
Kalderén
,
Sandra
Rodriguez-Perales
,
Javier
Benítez
,
Hans E
Krokan
,
Mikael
Altun
,
Pal
Stenmark
,
Ulrika Warpman
Berglund
,
Thomas
Helleday
Diamond Proposal Number(s):
[15806]
Open Access
Abstract: Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.
|
Nov 2020
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15806]
Open Access
Abstract: MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP-bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site sub-pocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1 catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.
|
Mar 2020
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Torkild
Visnes
,
Armando
Cázares-Körner
,
Wenjing
Hao
,
Olov
Wallner
,
Geoffrey
Masuyer
,
Olga
Loseva
,
Oliver
Mortusewicz
,
Elisée
Wiita
,
Antonio
Sarno
,
Aleksandr
Manoilov
,
Juan
Astorga-Wells
,
Ann-Sofie
Jemth
,
Lang
Pan
,
Kumar
Sanjiv
,
Stella
Karsten
,
Camilla
Gokturk
,
Maurice
Grube
,
Evert J.
Homan
,
Bishoy M. F.
Hanna
,
Cynthia B. J.
Paulin
,
Therese
Pham
,
Azita
Rasti
,
Ulrika Warpman
Berglund
,
Catharina
Von Nicolai
,
Carlos
Benitez-Buelga
,
Tobias
Koolmeister
,
Dag
Ivanic
,
Petar
Iliev
,
Martin
Scobie
,
Hans E.
Krokan
,
Pawel
Baranczewski
,
Per
Artursson
,
Mikael
Altun
,
Annika Jenmalm
Jensen
,
Christina
Kalderén
,
Xueqing
Ba
,
Roman A.
Zubarev
,
Pal
Stenmark
,
Istvan
Boldogh
,
Thomas
Helleday
Diamond Proposal Number(s):
[15806]
Abstract: The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor–α–induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor κB and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.
|
Nov 2018
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Ann-Sofie
Jemth
,
Robert
Gustafsson
,
Lars
Bräutigam
,
Linda
Henriksson
,
Karl S. A.
Vallin
,
Antonio
Sarno
,
Ingrid
Almlöf
,
Evert
Homan
,
Azita
Rasti
,
Ulrika
Warpman berglund
,
Pal
Stenmark
,
Thomas
Helleday
Diamond Proposal Number(s):
[11265]
Open Access
Abstract: Nucleotides in the free pool are more susceptible to nonenzymatic methylation than those protected in the DNA double helix. Methylated nucleotides like O6-methyl-dGTP can be mutagenic and toxic if incorporated into DNA. Removal of methylated nucleotides from the nucleotide pool may therefore be important to maintain genome integrity. We show that MutT homologue 1 (MTH1) efficiently catalyzes the hydrolysis of O6-methyl-dGTP with a catalytic efficiency similar to that for 8-oxo-dGTP. O6-methyl-dGTP activity is exclusive to MTH1 among human NUDIX proteins and conserved through evolution but not found in bacterial MutT. We present a high resolution crystal structure of human and zebrafish MTH1 in complex with O6-methyl-dGMP. By microinjecting fertilized zebrafish eggs with O6-methyl-dGTP and inhibiting MTH1 we demonstrate that survival is dependent on active MTH1 in vivo. O6-methyl-dG levels are higher in DNA extracted from zebrafish embryos microinjected with O6-methyl-dGTP and inhibition of O6-methylguanine-DNA methyl transferase (MGMT) increases the toxicity of O6-methyl-dGTP demonstrating that O6-methyl-dGTP is incorporated into DNA. MTH1 deficiency sensitizes human cells to the alkylating agent Temozolomide, a sensitization that is more pronounced upon MGMT inhibition. These results expand the cellular MTH1 function and suggests MTH1 also is important for removal of methylated nucleotides from the nucleotide pool.
|
Oct 2018
|
|