I10-Beamline for Advanced Dichroism - scattering
|
Diamond Proposal Number(s):
[17516]
Open Access
Abstract: Exchange coupling in a model core-shell system is demonstrated as a step on the path to 3d exchange spring magnets. Employing a model system of Ni@CoFe2O4, high quality core-shell nanoparticles were fabricated using a simple two-step method, microstructural quality was validated with TEM confirming well-defined interface between core and shell. A strongly temperature dependent two-phase magnetic hysteresis loop was measured, wherein analysis of step heights indicates coupling of roughly 50 % between the core and the shell. Element-specific XMCD hysteresis confirms the presence of exchange coupling, suppressing the superparamagnetism of the Ni core at room temperature, and reaching a coercivity of > 6 kOe at 80 K. These results provide a pathway to the development of heterostructured metal-oxide exchange coupled nanoparticles with improved maximum energy product.
|
Jul 2023
|
|
I03-Macromolecular Crystallography
|
Alexander T.
Baker
,
Ryan J.
Boyd
,
Daipayan
Sarkar
,
Alicia
Teijeira-Crespo
,
Chun Kit
Chan
,
Emily
Bates
,
Kasim
Waraich
,
John
Vant
,
Eric
Wilson
,
Chloe D.
Truong
,
Magdalena
Lipka-Lloyd
,
Petra
Fromme
,
Josh
Vermaas
,
Dewight
Williams
,
Leeann
Machiesky
,
Meike
Heurich
,
Bolni M.
Nagalo
,
Lynda
Coughlan
,
Scott
Umlauf
,
Po-Lin
Chiu
,
Pierre J.
Rizkallah
,
Taylor S.
Cohen
,
Alan L.
Parker
,
Abhishek
Singharoy
,
Mitesh J.
Borad
Diamond Proposal Number(s):
[20147]
Open Access
Abstract: Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.
|
Dec 2021
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18812]
Open Access
Abstract: The human adenovirus (HAdV) phylogenetic tree is diverse, divided across seven species and comprising over 100 individual types. Species D HAdV are rarely isolated with low rates of pre-existing immunity, making them appealing for therapeutic applications. Several species D vectors have been developed as vaccines against infectious diseases where they induce robust immunity in pre-clinical models and early phase clinical trials. However, many aspects of the basic virology of species D HAdV, including their basic receptor usage and means of cell entry, remain understudied.
Here, we investigated HAdV-D49, which previously has been studied for vaccine and vascular gene transfer applications. We generated a pseudotyped HAdV-C5 presenting the HAdV-D49 fiber knob protein (HAdV-C5/D49K). This pseudotyped vector was efficient at infecting cells devoid of all known HAdV receptors, indicating HAdV-D49 uses an unidentified cellular receptor. Conversely, a pseudotyped vector presenting the fiber knob protein of the closely related HAdV-D30 (HAdV-C5/D30K), differing in four amino acids to HAdV-D49, failed to demonstrate the same tropism. These four amino acid changes resulted in a change in isoelectric point of the knob protein, with HAdV-D49K possessing a basic apical region compared to a more acidic region in HAdV-D30K. Structurally and biologically we demonstrate that HAdV-D49 knob protein is unable to engage CD46, while potential interaction with CAR is extremely limited by extension of the DG loop. HAdV-C5/49K efficiently transduced cancer cell lines of pancreatic, breast, lung, oesophageal and ovarian origin, indicating it may have potential for oncolytic virotherapy applications, especially for difficult to transduce tumor types.
|
Dec 2020
|
|
I05-ARPES
I10-Beamline for Advanced Dichroism - scattering
|
Abstract: Spin transfer in magnetic multilayers offers the possibility of a new generation of ultra-fast, low-power spintronic devices. New ways to control the resonance frequency and damping in ultrathin films are actively sought, fuelling study of the precessional dynamics and interaction mechanisms in such samples. One effect that has come under particular scrutiny in recent years is the spin-transfer torque, wherein a flow of spins entering a ferromagnet exerts a torque on the magnetisation, inducing precession. A flow of spin angular momentum is usually generated through a spin-polarised electrical current, but a promising alternative is the pure spin current emitted by a ferromagnet undergoing ferromagnetic resonance (FMR). This allows spins to be transferred without a net charge flow. The physics of the generation, transmission and absorption of pure spin currents is a developing field, and holds great promise for both industrial applications and as a means to study fundamental physical phenomena in exotic materials.
This thesis presents an investigation into the magnetodynamics of ferromagnetic thin films and heterostructures grown by molecular beam epitaxy and studied using vector-network analyser ferromagnetic resonance (VNA-FMR), x-ray magnetic circular dichroism, vibrating sample magnetometry and x-ray detected ferromagnetic resonance (XFMR). Particular attention is paid to the anisotropy of damping processes that occur in thin films, and the different coupling mechanisms that can exist across non-magnetic spacer layers in spin valves and magnetic tunnel junctions.
It is first shown that the static and dynamic magnetic properties of thin Fe films can be effectively tailored by dilute doping with Dy impurities, which introduces a sizeable anisotropy of Gilbert damping. The mechanism underlying this effect is discussed, as is the concurrent modification of the spin and orbital contributions to the magnetic moment.
The focus then turns to magnetodynamics of ferromagnetic films coupled across a nonmagnetic spacer layer, examining how different materials permit different interactions. First, an insulating MgO layer is used to separate the FM layers; it is found that this attenuates a spin current in under 1~nm, but permits a static interaction for at least 2 nm. XFMR measurements are used to ascertain the different contributions of the two interactions, and shed light on their interplay. Next, the same techniques are applied to spin valves with a spacer layer of the topological insulator (TI) Bi2Se3. TIs are the subject of much attention in the physics community, as they hold the potential for dissipationless transport, extremely high spin-orbit torques, and a host of novel physical effects. Here, their ability to absorb and transmit a pure spin current is studied, testing their suitability for incorporation into existing device schemata. VNA-FMR measurements confirm that the TI functions as an efficient angular momentum sink. XFMR measurements, however, demonstrate the presence of a weak interaction between the two ferromagnets, able to persist up to at least 8~nm, and possibly mediated by the topological surface state.
Finally, the angle-dependence of spin pumping through a Cr barrier is examined, finding that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter in the spin sink layer. VNA-FMR measurements show that anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. XFMR results confirm induced precession in the spin sink layer, with isotropic static exchange and an anisotropic dynamic exchange.
Taken together, these studies provide an insight not only into the magnetisation dynamics of thin films (and ways to modify them) but a demonstration of the power of ferromagnetic resonance techniques, and their applicability across materials...
|
Jan 2020
|
|
I11-High Resolution Powder Diffraction
|
S. A.
Barczak
,
R. J.
Quinn
,
J. E.
Halpin
,
K.
Domosud
,
R. I.
Smith
,
A. R.
Baker
,
E.
Don
,
I.
Forbes
,
K.
Refson
,
D. A.
Maclaren
,
J. W. G.
Bos
Diamond Proposal Number(s):
[14032]
Open Access
Abstract: We outline a strategy to improve the thermoelectric performance of n-type XNiSn based half-Heusler alloys through Cu doping into vacant tetrahedral sites. A comprehensive combination of structural characterisation and modelling is employed to discriminate the competing mechanisms for thermoelectric enhancement. During synthesis a mineralising effect occurs that improves the homogeneity of the alloying elements Ti, Zr and Hf, and promotes grain growth, leading to a doubling of the electron mobility. In the formed materials, Cu is a strong n-type dopant, like Sb, but occupies the interstitial site and strongly enhances phonon scattering without diminishing carrier mobility (in contrast to interstitial Ni). Simultaneous alloying with Ti, Zr and Hf serves to minimise the thermal conductivity via regular mass disorder and strain effects. A best electronic power factor, S2/ρ, of 3.6 mW m−1 K−2 and maximum ZT of 0.8 at 773 K were observed for a Ti0.5Zr0.25Hf0.25NiCu0.025Sn composition, enabling promising device power densities of ∼6 W cm−2 and ∼8% conversion efficiency from a 450 K gradient. These findings are important because they provide new insight into the mechanisms underpinning high ZT in the XNiSn system and indicate a direction for further improvements in thermoelectric performance.
|
Nov 2019
|
|
I11-High Resolution Powder Diffraction
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[15125]
Open Access
Abstract: Context. Laboratory analogues can provide physical constraints to the interpretation of astronomical observations of cosmic dust but clearly do not experience the same formation conditions. To distinguish between properties intrinsic to the material and properties imprinted by their means of formation requires extensive characterisation. Aims. Sol-gel methods can produce amorphous silicates with potentially high reproducibility, but often require long drying times (24+ hours) at elevated temperatures in air, controlled atmosphere, or vacuum. We investigate the possibility that microwave drying can be used to form amorphous silicate on a timescale of ∼10 minutes and characterise their structural and spectroscopic properties relative to silicates produced by other drying methods. Methods. Microwave-dried amorphous MgSiO3, Fe 0.1Mg0.9SiO3 and Mg2SiO4 are characterised using X-ray powder diffraction, total X-ray scattering, small angle X-ray scattering and mid-IR FTIR spectroscopy, and compared to samples produced from the same gels, but dried in-air and under vacuum. The development of crystalline structure in the microwave-dried silicates via thermal annealing up to 999 ◦C is also investigated using in situ X-ray powder diffraction. Results. At the inter-atomic level the silicate structures are largely independent of drying method, however largerscale structured domains, ranging from a ∼few×10 ˚A to∼100’s ˚A in size, are observed. These are ordered as mass fractals with discernible variation caused by the drying processes. The mid-IR 10 μm band profile is also found to be influenced by the drying process, likely due to the way removal of water and bonded OH influences the distribution of tetrahedral species. However, microwave drying also allows Fe to be easily incorporated into the silicate structure. In situ annealing shows that for amorphous MgSiO3 crystalline forsterite, enstatite and cristobalite are high temperature phases, while for Mg2SiO4 forsterite crystallises at lower temperatures followed by cristobalite at high temperature. For Fe0.1Mg0.9SiO3 the crystallisation temperature is significantly increased and only forsterite is observed. Crystalline SiO2 may be diagnostic of Mg-rich, Fe-poor grain mineralogies. The results are discussed in relation to the different thermal conditions required for dust to crystallise within protoplanetary disk lifetimes. Conclusions. Sol-gel microwave drying provides a fast and easy method of producing amorphous Mg- and Fe,Mg-silicates of both pyroxene and olivine compositions. Their structure and spectroscopic characteristics although similar to silicates produced using other drying methods, exhibit subtle variations which are particularly manifest spectroscopically in the mid-IR, and structurally over medium- and long-range length scales.
|
Mar 2019
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14843]
Open Access
Abstract: Adenovirus based vectors are of increasing importance for wide ranging therapeutic applications. As vaccines, vectors derived from human adenovirus species D serotypes 26 and 48 (HAdV-D26/48) are demonstrating promising efficacy as protective platforms against infectious diseases. Significant clinical progress has been made, yet definitive studies underpinning mechanisms of entry, infection, and receptor usage are currently lacking. Here, we perform structural and biological analysis of the receptor binding fiber-knob protein of HAdV-D26/48, reporting crystal structures, and modelling putative interactions with two previously suggested attachment receptors, CD46 and Coxsackie and Adenovirus Receptor (CAR). We provide evidence of a low affinity interaction with CAR, with modelling suggesting affinity is attenuated through extended, semi-flexible loop structures, providing steric hindrance. Conversely, in silico and in vitro experiments are unable to provide evidence of interaction between HAdV-D26/48 fiber-knob with CD46, or with Desmoglein 2. Our findings provide insight into the cell-virus interactions of HAdV-D26/48, with important implications for the design and engineering of optimised Ad-based therapeutics.
|
Feb 2019
|
|
I10-Beamline for Advanced Dichroism - scattering
|
Diamond Proposal Number(s):
[9210, 11500]
Abstract: We studied the magnetodynamics of ferromagnetic films coupling across a topological insulator (TI)
Bi2Se3 layer using ferromagnetic resonance (FMR). TIs have attracted much attention across the physics community as they hold the potential for dissipationless carrier transport, extremely high spin-orbit torques, and are host to novel quantum effects. To investigate the coupling between the ferromagnetic (FM) layers, vector network analyzer (VNA)-FMR measurements of the resonance linewidth were performed as a function of bias field angle. By bringing the resonances of the two FM layers into close proximity, it was possible to observe antidamping torques that lead to a narrowing of linewidth, a characteristic of spin pumping. The element- and hence layer-specific technique of x-ray detected ferromagnetic resonance (XFMR) was used to circumvent the difficulty of obtaining accurate fits to the two overlapping resonances in close proximity. Our results confirm that the interaction across the TI is a dynamic exchange mediated by spin pumping, as opposed to a self-coupling of the surface state or similar, more unconventional mechanisms.
|
Oct 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13173]
Open Access
Abstract: The new long duration experiment facility on beamline I11 at Diamond Light Source has been used to study the kinetics of sigma phase formation in three Cr–Co–Ni alloys. Diffraction data acquired during in situ exposure at 800°C for 50 d showed progressive increases in the sigma fraction. This was accompanied by changes in the proportions of the other phases, which differed markedly between the alloys studied. These results demonstrate the capabilities of the long duration facility for the study of metallurgical phenomena over periods of months to years, a capability not previously available at a synchrotron source.
|
Sep 2018
|
|
I10-Beamline for Advanced Dichroism - scattering
|
Diamond Proposal Number(s):
[10207]
Open Access
Abstract: Magnetic doping of topological insulators (TIs) is crucial for unlocking novel quantum phenomena, paving the way for spintronics applications. Recently, we have shown that doping with rare earth ions introduces large magnetic moments and allows for high doping concentrations without the loss of crystal quality, however no long range magnetic order was observed. In Dy-doped Bi2Te3 we found a band gap opening above a critical doping concentration, despite the paramagnetic bulk behavior. Here, we present a surface-sensitive x-ray magnetic circular dichroism (XMCD) study of an in-situ cleaved film in the cleanest possible environment. The Dy M4,5 absorption spectra measured with circularly polarized x-rays are fitted using multiplet calculations to obtain the effective magnetic moment. Arrott-Noakes plots, measured by the Dy M5 XMCD as a function of field at low temperatures, give a negative transition temperature. The evaporation of a ferromagnetic Co thin film did not introduce ferromagnetic ordering of the Dy dopants either; instead a lowering of the transition temperature was observed, pointing towards an antiferromagnetic ordering scenario. This result shows that there is a competition between the magnetic exchange interaction and the Zeeman interaction. The latter favors the Co and Dy magnetic moments to be both aligned along the direction of the applied magnetic field, while the exchange interaction is minimized if the Dy and Co atoms are antiferromagnetically coupled, as in zero applied field.
|
Nov 2016
|
|