I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Jordan R.
Barrett
,
Dimitra
Pipini
,
Nathan D.
Wright
,
Andrew J. R.
Cooper
,
Giacomo
Gorini
,
Doris
Quinkert
,
Amelia M.
Lias
,
Hannah
Davies
,
Cassandra A.
Rigby
,
Maya
Aleshnick
,
Barnabas G.
Williams
,
William J.
Bradshaw
,
Neil G.
Paterson
,
Thomas
Martinson
,
Payton
Kirtley
,
Luc
Picard
,
Christine D.
Wiggins
,
Francesca R.
Donnellan
,
Lloyd D. W.
King
,
Lawrence T.
Wang
,
Jonathan F.
Popplewell
,
Sarah E.
Silk
,
Jed
De Ruiter Swain
,
Katherine
Skinner
,
Vinayaka
Kotraiah
,
Amy R.
Noe
,
Randall S.
Macgill
,
C. Richter
King
,
Ashley J.
Birkett
,
Lorraine A.
Soisson
,
Angela M.
Minassian
,
Douglas A.
Lauffenburger
,
Kazutoyo
Miura
,
Carole A.
Long
,
Brandon K.
Wilder
,
Lizbe
Koekemoer
,
Joshua
Tan
,
Carolyn M.
Nielsen
,
Kirsty
Mchugh
,
Simon J.
Draper
Diamond Proposal Number(s):
[28172]
Open Access
Abstract: The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.
|
Jul 2024
|
|
I03-Macromolecular Crystallography
|
Open Access
Abstract: We report a crystal structure at atomic resolution (0.9 Å) of a ruthenium complex bound to a consecutive DNA double mismatch, which results in a TA basepair with flipped out thymine, together with the formation of an adenine bulge. The structure shows a form of metalloinsertion interaction of the Λ-[Ru(phen)2phi]2+ (phi= 9,10-phenanthrenediimine) complex at the bulge site. The metal complex interacts with the DNA via the major groove, where specific interactions between the adenines of the DNA and the phen ligands of the complex are formed. One Δ-[Ru(phen)2phi]2+ complex interacts via the minor groove, which shows sandwiching of its phi ligand between the phi ligands of the other two ruthenium complexes, and no interaction of its phen ligands with DNA. To our knowledge, this binding model represents a new form of metalloinsertion in showing major rather than minor groove insertion.
|
May 2024
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Chang
Liu
,
Raksha
Das
,
Aiste
Dijokaite-Guraliuc
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Helen M. E.
Duyvesteyn
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Open Access
Abstract: The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called ‘FLip’ mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.
|
Apr 2024
|
|
I03-Macromolecular Crystallography
|
Open Access
Abstract: The grooves of DNA provide recognition sites for many nucleic acid binding proteins and anticancer drugs such as the covalently binding cisplatin. Here we report a crystal structure showing, for the first time, groove selectivity by an intercalating ruthenium complex. The complex Λ-[Ru(phen)2phi]2+, where phi = 9,10-phenanthrenediimine, is bound to the DNA decamer duplex d(CCGGTACCGG)2. The structure shows that the metal complex is symmetrically bound in the major groove at the central TA/TA step, and asymmetrically bound in the minor groove at the adjacent GG/CC steps. A third type of binding links the strands, in which each terminal cytosine base stacks with one phen ligand. The overall binding stoichiometry is four Ru complexes per duplex. Complementary biophysical measurements confirm the binding preference for the Λ-enantiomer and show a high affinity for TA/TA steps and, more generally, TA-rich sequences. A striking enantiospecific elevation of melting temperatures is found for oligonucleotides which include the TATA box sequence.
|
Jan 2024
|
|
Data acquisition
|
Open Access
Abstract: At Diamond Light Source, several Macromolecular Crystallography (MX) beamlines focus on, or include, completely automated data collection. This is used primarily for high throughput collection on samples with known or partially known structures, for example, screening a protein for drug or drug fragment interactions. The automated data collection routines are currently built on legacy experiment orchestration software which includes a lot of redundancy originally implemented for safety when human users are controlling the beamline, but which is inefficient when the beamline hardware occupies a smaller number of known states. Diamond is building its next generation, service-based, Data Acquisition Platform, Athena, using NSLSII’s Bluesky experiment orchestration library. The Bluesky library facilitates optimising the orchestration of experiment control by simplifying the work necessary to parallelise and reorganise the steps of an experimental procedure. The MX data acquisition team at Diamond is using the Athena platform to increase the possible rate of automated MX data collection both for immediate use and in preparation to take advantage of the upgraded Diamond-II synchrotron, due in several years. This project, named Hyperion, will include sample orientation and centring, fluorescence scanning, optical monitoring, collection strategy determination, and rotation data collection at multiple positions on a single sample pin.
|
Dec 2023
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Tamar
Skaist Mehlmam
,
Justin T.
Biel
,
Syeda Maryam
Azeem
,
Elliot R.
Nelson
,
Sakib
Hossain
,
Louise
Dunnett
,
Neil G.
Paterson
,
Alice
Douangamath
,
Romain
Talon
,
Danny
Axford
,
Helen
Orins
,
Frank
Von Delft
,
Daniel A.
Keedy
Diamond Proposal Number(s):
[15751, 18340, 23570]
Open Access
Abstract: Much of our current understanding of how small-molecule ligands interact with proteins stems from X-ray crystal structures determined at cryogenic (cryo) temperature. For proteins alone, room-temperature (RT) crystallography can reveal previously hidden, biologically relevant alternate conformations. However, less is understood about how RT crystallography may impact the conformational landscapes of protein-ligand complexes. Previously, we showed that small-molecule fragments cluster in putative allosteric sites using a cryo crystallographic screen of the therapeutic target PTP1B (Keedy et al., 2018). Here, we have performed two RT crystallographic screens of PTP1B using many of the same fragments, representing the largest RT crystallographic screens of a diverse library of ligands to date, and enabling a direct interrogation of the effect of data collection temperature on protein-ligand interactions. We show that at RT, fewer ligands bind, and often more weakly – but with a variety of temperature-dependent differences, including unique binding poses, changes in solvation, new binding sites, and distinct protein allosteric conformational responses. Overall, this work suggests that the vast body of existing cryo-temperature protein-ligand structures may provide an incomplete picture, and highlights the potential of RT crystallography to help complete this picture by revealing distinct conformational modes of protein-ligand systems. Our results may inspire future use of RT crystallography to interrogate the roles of protein-ligand conformational ensembles in biological function.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
|
Aiste
Dijokaite-Guraliuc
,
Raksha
Das
,
Daming
Zhou
,
Helen M.
Ginn
,
Chang
Liu
,
Helen M. E.
Duyvesteyn
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Thushan I.
De Silva
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Cornelius
Roemer
,
Thomas P.
Peacock
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
|
Jiandong
Huo
,
Aiste
Dijokaite-Guraliuc
,
Chang
Liu
,
Raksha
Das
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Rungtiwa
Nutalai
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Ali
Amini
,
Sagida
Bibi
,
Sandra
Adele
,
Sile Ann
Johnson
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Thushan I.
De Silva
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Andrew J.
Pollard
,
Teresa
Lambe
,
Philip
Goulder
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: Variants of SARS CoV-2 have caused successive global waves of infection. These variants, with multiple mutations in the spike protein are thought to facilitate escape from natural and vaccine-induced immunity and often increase in the affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor binding domain (RBD). Here we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared to BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection which may explain the rapid spread in India, where BA.2.75 is now the dominant variant. ACE2 affinity appears to be prioritised over greater escape.
|
Dec 2022
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23269]
Abstract: The α-helix is pre-eminent in structural biology1 and widely exploited in protein folding2, design3 and engineering4. Although other helical peptide conformations do exist near to the α-helical region of conformational space—namely, 310-helices and π-helices5—these occur much less frequently in protein structures. Less favourable internal energies and reduced tendencies to pack into higher-order structures mean that 310-helices rarely exceed six residues in length in natural proteins, and that they tend not to form normal supersecondary, tertiary or quaternary interactions. Here we show that despite their absence in nature, synthetic peptide assemblies can be built from 310-helices. We report the rational design, solution-phase characterization and an X-ray crystal structure for water-soluble bundles of 310-helices with consolidated hydrophobic cores. The design uses six-residue repeats informed by analysing 310-helical conformations in known protein structures, and incorporates α-aminoisobutyric acid residues. Design iterations reveal a tipping point between α-helical and 310-helical folding, and identify features required for stabilizing assemblies of 310-helices. This work provides principles and rules to open opportunities for designing into this hitherto unexplored region of protein-structure space.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
|
Aekkachai
Tuekprakhon
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Aiste
Dijokaite-Guraliuc
,
Daming
Zhou
,
Helen M.
Ginn
,
Muneeswaran
Selvaraj
,
Chang
Liu
,
Alexander J.
Mentzer
,
Piyada
Supasa
,
Helen M. E.
Duyvesteyn
,
Raksha
Das
,
Donal
Skelly
,
Thomas G.
Ritter
,
Ali
Amini
,
Sagida
Bibi
,
Sandra
Adele
,
Sile Ann
Johnson
,
Bede
Constantinides
,
Hermione
Webster
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Derrick
Crook
,
Andrew J.
Pollard
,
Teresa
Lambe
,
Philip
Goulder
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
,
Christopher
Conlon
,
Alexandra
Deeks
,
John
Frater
,
Lisa
Frending
,
Siobhan
Gardiner
,
Anni
Jämsén
,
Katie
Jeffery
,
Tom
Malone
,
Eloise
Phillips
,
Lucy
Rothwell
,
Lizzie
Stafford
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa’s Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.
|
Jun 2022
|
|