I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Ana S.
Luis
,
Arnaud
Basle
,
Dominic P.
Byrne
,
Gareth S. A.
Wright
,
James A.
London
,
Chunsheng
Jin
,
Niclas G.
Karlsson
,
Gunnar C.
Hansson
,
Patrick A.
Eyers
,
Mirjam
Czjzek
,
Tristan
Barbeyron
,
Edwin A.
Yates
,
Eric C.
Martens
,
Alan
Cartmell
Diamond Proposal Number(s):
[21970, 18598]
Abstract: Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Ana S.
Luis
,
Chunsheng
Jin
,
Gabriel
Vasconcelos Pereira
,
Robert W. P.
Glowacki
,
Sadie R.
Gugel
,
Shaleni
Singh
,
Dominic P.
Byrne
,
Nicholas A.
Pudlo
,
James A.
London
,
Arnaud
Basle
,
Mark
Reihill
,
Stefan
Oscarson
,
Patrick A.
Eyers
,
Mirjam
Czjzek
,
Gurvan
Michel
,
Tristan
Barbeyron
,
Edwin A.
Yates
,
Gunnar C.
Hansson
,
Niclas G.
Karlsson
,
Alan
Cartmell
,
Eric C.
Martens
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization and diseases such as inflammatory bowel disease.
|
Oct 2021
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Declan A.
Gray
,
Joshua B. R.
White
,
Abraham O.
Oluwole
,
Parthasarathi
Rath
,
Amy J.
Glenwright
,
Adam
Mazur
,
Michael
Zahn
,
Arnaud
Basle
,
Carl
Morland
,
Sasha L.
Evans
,
Alan
Cartmell
,
Carol V.
Robinson
,
Sebastian
Hiller
,
Neil A.
Ranson
,
David N.
Bolam
,
Bert
Van Den Berg
Diamond Proposal Number(s):
[13587, 18598]
Open Access
Abstract: In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a “pedal bin” transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the β2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ~2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism.
|
Jan 2021
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: The human gut microbiota (HGM), which is critical to human health, utilises complex glycans as its major carbon source. Glycosaminoglycans represent an important, high priority, nutrient source for the HGM. Pathways for the metabolism of various glycosaminoglycan substrates remain ill-defined. Here we perform a biochemical, genetic and structural dissection of the genetic loci that orchestrates glycosaminoglycan metabolism in the organism Bacteroides thetaiotaomicron. Here, we report: the discovery of two previously unknown surface glycan binding proteins which facilitate glycosaminoglycan import into the periplasm; distinct kinetic and genetic specificities of various periplasmic lyases which dictate glycosaminoglycan metabolic pathways; understanding of endo sulfatase activity questioning the paradigm of how the ‘sulfation problem’ is handled by the HGM; and 3D crystal structures of the polysaccharide utilisation loci encoded sulfatases. Together with comparative genomic studies, our study fills major gaps in our knowledge of glycosaminoglycan metabolism by the HGM.
|
Jan 2020
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13587]
Open Access
Abstract: The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiome. The selection pressures in this environment have spurred the evolution of a complex reservoir of microbial genes encoding carbohydrate-active enzymes (CAZymes). Previously, we have shown that the human gut bacterium Bacteroides thetaiotaomicron (Bt) can depolymerize the most structurally complex glycan, the plant pectin rhamnogalacturonan II (RGII), commonly found in the human diet. Previous investigation of the RGIIdegrading apparatus in Bt identified BT0997 as a new CAZyme family, classified as glycoside hydrolase 138 (GH138). The mechanism of substrate recognition by GH138, however, remains unclear. Here, using synthetic substrates and biochemical assays, we show that BT0997 targets the D-galacturonic acid-α-1,2-L-rhamnose linkage in chain A of RGII and that it absolutely requires the presence of a second D-galacturonic acid side chain (linked β-1,3 to L-rhamnose) for activity. NMR analysis revealed that BT0997 operates through a double-displacement, retaining mechanism. We also report the crystal structure of a BT0997 homolog, BPA0997 from Bacteroides paurosaccharolyticus, in complex with ligands at 1.6 Å resolution. The structure disclosed that the enzyme comprises four domains, including a catalytic TIM (α/β)8 barrel. Characterization of several BT0997 variants identified Glu-294 and Glu361 as the catalytic acid/base and nucleophile, respectively, and we observed a chloride ion close to the active site. The three-dimensional structure and bioinformatic analysis revealed that two arginines, Arg-332 and Arg-521, are key specificity determinants of BT0997 in targeting D-galacturonic acid residues. In summary, our study reports the first structural and mechanistic analyses of GH138 enzymes.
|
Mar 2019
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Alan
Cartmell
,
Jose
Muñoz-Muñoz
,
Jonathon A.
Briggs
,
Didier A.
Ndeh
,
Elisabeth C.
Lowe
,
Arnaud
Basle
,
Nicolas
Terrapon
,
Katherine
Stott
,
Tiaan
Heunis
,
Joe
Gray
,
Li
Yu
,
Paul
Dupree
,
Pearl Z.
Fernandes
,
Sayali
Shah
,
Spencer J.
Williams
,
Aurore
Labourel
,
Matthias
Trost
,
Bernard
Henrissat
,
Harry J.
Gilbert
Diamond Proposal Number(s):
[1960, 7854, 9948]
Abstract: Glycans are major nutrients for the human gut microbiota (HGM). Arabinogalactan proteins (AGPs) comprise a heterogenous group of plant glycans in which a β1,3-galactan backbone and β1,6-galactan side chains are conserved. Diversity is provided by the variable nature of the sugars that decorate the galactans. The mechanisms by which nutritionally relevant AGPs are degraded in the HGM are poorly understood. Here we explore how the HGM organism Bacteroides thetaiotaomicron metabolizes AGPs. We propose a sequential degradative model in which exo-acting glycoside hydrolase (GH) family 43 β1,3-galactanases release the side chains. These oligosaccharide side chains are depolymerized by the synergistic action of exo-acting enzymes in which catalytic interactions are dependent on whether degradation is initiated by a lyase or GH. We identified two GHs that establish two previously undiscovered GH families. The crystal structures of the exo-β1,3-galactanases identified a key specificity determinant and departure from the canonical catalytic apparatus of GH43 enzymes. Growth studies of Bacteroidetes spp. on complex AGP revealed 3 keystone organisms that facilitated utilization of the glycan by 17 recipient bacteria, which included B. thetaiotaomicron. A surface endo-β1,3-galactanase, when engineered into B. thetaiotaomicron, enabled the bacterium to utilize complex AGPs and act as a keystone organism.
|
Nov 2018
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13587]
Open Access
Abstract: The recent discovery of `lytic' polysaccharide monooxygenases, copper-dependent enzymes for biomass degradation, has provided new impetus for the analysis of unusual metal-ion sites in carbohydrate-active enzymes. In this context, the CAZY family GH124 endoglucanase from Ruminiclostridium thermocellum contains an unusual metal-ion site, which was originally modelled as a Ca2+ site but features aspartic acid, asparagine and two histidine imidazoles as coordinating residues, which are more consistent with a transition-metal binding environment. It was sought to analyse whether the GH124 metal-ion site might accommodate other metals. It is demonstrated through thermal unfolding experiments that this metal-ion site can accommodate a range of transition metals (Fe2+, Cu2+, Mn2+ and Ni2+), whilst the three-dimensional structure and mass spectrometry show that one of the histidines is partially covalently modified and is present as a 2-oxohistidine residue; a feature that is rarely observed but that is believed to be involved in an `off-switch' to transition-metal binding. Atomic resolution (<1.1 Å) complexes define the metal-ion site and also reveal the binding of an unusual fructosylated oligosaccharide, which was presumably present as a contaminant in the cellohexaose used for crystallization. Although it has not been possible to detect a biological role for the unusual metal-ion site, this work highlights the need to study some of the many metal-ion sites in carbohydrate-active enzymes that have long been overlooked or previously mis-assigned.
|
Aug 2018
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Ana S.
Luis
,
Jonathon
Briggs
,
Xiaoyang
Zhang
,
Benjamin
Farnell
,
Didier
Ndeh
,
Aurore
Labourel
,
Arnaud
Basle
,
Alan
Cartmell
,
Nicolas
Terrapon
,
Katherine
Stott
,
Elisabeth C.
Lowe
,
Richard
Mclean
,
Kaitlyn
Shearer
,
Julia
Schückel
,
Immacolata
Venditto
,
Marie-Christine
Ralet
,
Bernard
Henrissat
,
Eric C.
Martens
,
Steven C.
Mosimann
,
D. Wade
Abbott
,
Harry J.
Gilbert
Diamond Proposal Number(s):
[1960, 7854, 9948]
Abstract: The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.
|
Dec 2017
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Alan
Cartmell
,
Elisabeth C.
Lowe
,
Arnaud
Basle
,
Susan J.
Firbank
,
Didier A.
Ndeh
,
Heath
Murray
,
Nicolas
Terrapon
,
Vincent
Lombard
,
Bernard
Henrissat
,
Jeremy E.
Turnbull
,
Mirjam
Czjzek
,
Harry J.
Gilbert
,
David N.
Bolam
Diamond Proposal Number(s):
[311, 9948]
Open Access
Abstract: The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron, a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides, indicating that the model developed is of generic relevance to this important microbial community.
|
Jul 2017
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9948, 13587]
Open Access
Abstract: The human gut microbiota utilizes complex carbohydrates as major nutrients. The requirement for efficient glycan degrading systems exerts a major selective selection pressure on this microbial community. Thus, we propose that this microbial ecosystem represents a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis we screened the potential enzymatic functions of hypothetical proteins encoded by genes of Bacteroides thetaiotaomicron that were upregulated by arabinogalactan arabinogalactan proteins or AGPs. Although AGPs are ubiquitous in plants, there is a paucity of information on their detailed structure, the function of these glycans in planta and the mechanisms by which they are depolymerized in microbial ecosystems. Here we have discovered a new polysaccharide lyase family that is specific for the L-rhamnose-alpha1,4-D-glucuronic acid linkage that caps the side chains of complex AGPs. The reaction product generated by the lyase, delta4,5-unsaturated uronic acid, is removed from AGP by a glycoside hydrolase located in family GH105, producing the final product 4-deoxy-β-L-threo-hex-4-enepyranosyl-uronic acid. The crystal structure of a member of the novel lyase family revealed a catalytic domain that displays an (alpha/alpha6)6 barrel fold. In the centre of the barrel is a deep pocket, which, based on mutagenesis data and amino acid conservation, comprises the active site of the lyase. A tyrosine is the proposed catalytic base in the beta-elimination reaction. This study illustrates how highly complex glycans can be used as a scaffold to discover new enzyme families within microbial ecosystems where carbohydrate metabolism is a major evolutionary driver.
|
Jun 2017
|
|