B22-Multimode InfraRed imaging And Microspectroscopy
|
Abstract: Breadcrust bombs are pyroclasts displaying fractured, dense surfaces enveloping expanded interiors, and are associated with Vulcanian explosions. We document pyroclasts from the 2008–2009 CE eruption of Chaitén (Chile) that are internally as well as externally breadcrusted. The pyroclasts are cut by intersecting micrometer- to millimeter-thick tuffisites with dense glassy walls, which grade into strongly inflated pumiceous material. We find H2O diffusion gradients proximal to the breadcrusted surfaces, such that H2O is depleted from far-field magma (0.68 ± 0.04 wt%) into dense, fractured vein walls (0.2–0.3 wt%), indicating a spatial association between H2O mass transfer within the pyroclast interior and both suppressed vesiculation and breadcrusting. We experimentally confirm that diffusive H2O depletion suppresses bubble growth at shallow conduit conditions. Therefore, we interpret the breadcrust formation to be induced by H2O diffusion and the associated rise in viscosity rather than by cooling in the classical breadcrust-formation models. We posit that a “dehydration quench” is important as degassing continues to very low H2O contents in shallow-conduit magma that continues to vesiculate.
|
Jun 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Abstract: Bubble nucleation and growth dynamics exert a primary control on the explosivity of volcanic eruptions. Numerous theoretical and experimental studies aim to capture the complex process of melt vesiculation, whereas textural studies use vesicle populations to reconstruct magma behaviour. However, post-fragmentation vesiculation in rhyolitic bombs can create final quenched bubble (vesicle) textures that are not representative of the nature of fragmenting magma within the conduit. To examine bubble growth in hydrous rhyolitic bombs, we have used heated stage microscopy to directly observe vesiculation of a Chaitén rhyolite melt (with an initial dissolved water content of ∼0.95 wt %) at atmospheric pressure and magmatic temperatures upon reheating. Thin wafers of obsidian were held from 5 min up to two days in the heated stage at temperatures between 575 °C and 875 °C. We found that bubble growth rates, measured through changes in bubble diameter, increased with both temperature and bubble size. The average growth rate at the highest temperature of 875 °C is ∼1.27 μm s−1, which is substantially faster than the lowest detected growth rate of ∼0.02 μm s−1 at 725 °C; below this temperature no growth was observed. Average growth rate Vr follows an exponential relationship with temperature, T and inferred melt viscosity η, where Vr = 5.57
10−7e0.016 and Vr = 3270.26e−1.117η. Several stages of evolving bubble morphology were directly observed, including initial relaxation of deformed bubbles into spheres, extensive growth of spheres, and, at higher temperatures, close packing and foam formation. Bubble deformation due to bubble-bubble interaction and coalescence was observed in most experiments. We use our simple, experimentally-determined relationship between melt viscosity and bubble growth rates to model post-fragmentation vesicle growth in a cooling 1 m-diameter rhyolitic bomb. The results, which indicate negligible vesicle growth within 2–3 cm of the bomb surface, correspond well with the observed dense margin thickness of a Chaitén bomb of comparable dimensions. The experiments described can be used to effectively reconstruct the post-fragmentation vesiculation history of bombs through simple analytical expressions which provide a useful tool for aiding in the interpretation of pumiceous endmember textures in hydrous rhyolitic bombs.
|
Sep 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[9440]
Abstract: The protozoan Toxoplasma gondii is responsible for severe, potentially life-threatening, infection in immunocompromised individuals and when acquired during pregnancy. In the meantime, there is no available vaccine and the anti-T. gondii drug arsenal is limited. An important challenge to improve antiparasitic therapy is to understand chemical changes that occur during infection. Here, we used Fourier transform infrared spectroscopy (FTIR) to investigate the effect of T. gondii infection on the chemical composition of human brain microvascular endothelial cells (hBMECs) at 3, 6, 24 and 48 hours postinfection (hpi). Principal component analysis (PCA) showed that the best separation and largest difference between infected and uninfected hBMECs was detected at 24 hpi and within the 3400-2800 cm-1 region. At 48 hpi, although the difference between samples was obvious within the 3400-2800 cm-1 region, more differences were detected in the fingerprint region. These findings indicate that infected and control cells can be easily distinguished. Although differences between the spectra varied, the separation was most clear at 24 hpi. T. gondii increased signals for lipids (2853 cm-1) and nucleic acids (976 cm-1, 1097 cm-1 and 1245 cm-1), and decreased signals for proteins (3289 cm-1, 2963 cm-1, 2875 cm-1) in infected cells compared to controls. These results, supported by amino acid levels in culture media, and global metabolomic and gene expression analyses of hBMECs, suggest that T. gondii parasite exploits a wide range of host-derived chemical compounds and signaling pathways for its own survival and proliferation within host cells. Our data demonstrate that FTIR combined with chemometric analysis is a valuable approach to elucidate the temporal, infection-specific, chemical alterations in host cells at a single cell resolution.
|
Mar 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[15375, 17811]
Open Access
Abstract: The study of live cells using Fourier transform infrared spectroscopy (FTIR) and FTIR microspectroscopy (FT-IRMS) intrinsically yields more information about cell metabolism than comparable experiments using dried or chemically fixed samples. There are, however, a number of barriers to obtaining high-quality vibrational spectra of live cells, including correction for the significant contributions of water bands to the spectra, and the physical stresses placed upon cells by compression in short pathlength sample holders. In this study, we present a water correction method that is able to result in good-quality cell spectra from water layers of 10 and 12 μm and demonstrate that sufficient biological detail is retained to separate spectra of live cells based upon their exposure to different novel anti-cancer agents. The IR brilliance of a synchrotron radiation (SR) source overcomes the problem of the strong water absorption and provides cell spectra with good signal-to-noise ratio for further analysis. Supervised multivariate analysis (MVA) and investigation of average spectra have shown significant separation between control cells and cells treated with the DNA cross-linker PL63 on the basis of phosphate and DNA-related signatures. Meanwhile, the same control cells can be significantly distinguished from cells treated with the protein kinase inhibitor YA1 based on changes in the amide II region. Each of these separations can be linked directly to the known biochemical mode of action of each agent.
|
Jul 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[14912]
Open Access
Abstract: FTIR imaging is a label-free, non-destructive method valuably exploited in the study of the biological process in living cells. However, the long wavelength/low spatial resolution and the strong absorbance of water are still key constrains in the application of IR microscopy ex vivo. In this work, a new retrofit approach based on the use of ZnS hemispheres is introduced to significantly improve the spatial resolution on live cell FTIR imaging. By means of two high refractive index domes sandwiching the sample, a lateral resolution close to 2.2 μm at 6 μm wavelength has been achieved, i.e. below the theoretical diffraction limit in air and more than twice the improvement (to ~λ/2.7) from our previous attempt using CaF2 lenses. The ZnS domes also allowed an extended spectral range to 950 cm−1, in contrast to the cut-off at 1050 cm−1 using CaF2. In combination with synchrotron radiation source, microFTIR provides an improved signal-to-noise ratio through the circa 12 μm thin layer of medium, thus allowing detailed distribution of lipids, protein and nucleic acid in the surround of the nucleus of single living cells. Endoplasmic reticula were clearly shown based on the lipid ν(CH) and ν(C=O) bands, while the DNA was imaged based on the ν(PO2−) band highlighting the nucleus region. This work has also included a demonstration of drug (doxorubicin) in cell measurement to highlight the potential of this approach.
|
Jul 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Open Access
Abstract: Mycoplasma contamination represents a significant problem to the culture of mammalian cells used for research as it can cause disastrous effects on eukaryotic cells by altering cellular parameters leading to unreliable experimental results. Mycoplasma cells are very small bacteria therefore they cannot be detected by visual inspection using a visible light microscope and, thus, can remain unnoticed in the cell cultures for long periods. The detection techniques used nowadays to reveal mycoplasma contamination are time consuming and expensive with each having significant drawbacks. The ideal detection should be simple to perform with minimal preparation time, rapid, inexpensive, and sensitive. To our knowledge, for the first time, we employed Fourier transform infrared (FTIR) microspectroscopy to investigate whether we can differentiate between control cells and the same cells which have been infected with mycoplasmas during the culturing process. Chemometric methods such as HCA and PCA were used for the data analysis in order to detect spectral differences between control and intentionally infected cells, and spectral markers were revealed even at low contamination level. The preliminary results showed that FTIR has the potential to be used in the future as a reliable complementary detection technique for mycoplasma-infected cells.
|
Mar 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Open Access
Abstract: Infrared (IR) spectral imaging is a quantitative scientific technique for measuring both the molecular composition and its spatial distribution across large areas of materials. Synchrotron radiation (SR) enhances IR imaging with a broad spectral bandwidth unobtainable with a conventional laboratory source or laser (covering 10000 to 5 cm-1), while the high collimation and small size of the SRIR source provide a diffraction-limited microbeam. The use of a few micron-sized aperture for IR imaging has a clear advantage in SR in terms of spectral quality, due to the high spectral flux reaching microspots of the sample even at the lowest wavenumbers. In this article, we present IR imaging examples developed mostly in collaboration with the user community and the staff of the IR beamline MIRIAM (Multimode InfraRed Imaging And Microspectroscopy) at Diamond Light Source [1 G. Cinque et al., Synchrotron Radiation News 24(5), 24–33 (2011).
[Taylor & Francis Online], [Google Scholar]
]. The layout of the MIRIAM beamline (B22) is shown in Figure 1. Optically, this is composed of a UHV vacuum vessel including a two periscope system each with two metal mirrors, allowing refocusing and overcoming a midway shield wall (not shown). From the right, the bending magnet source illuminates a first flat mirror (with a horizontal slot rejecting X-rays) that reflects the SRIR fan onto an ellipsoidal mirror. The SRIR is focused midway and collected by another ellipsoidal mirror that redirects it down onto a double flat mirror; this can be translated laterally to send the focused SRIR to either of the two end stations (or part of the beam to both) through wedged diamond windows. The two experimental end stations are composed of Bruker Vertex 80V in-vacuum Fourier Transform IR (FTIR) interferometers with Hyperion 3000 IR microscopes. The IR detectors are broadband or high-sensitivity MCT (mercury cadmium telluride; 100 μm or 50 μm pitch) for point-by-point microscopy, and photovoltaic MCT focal plane array (FPA) 64 × 64 pixel detectors for full-field imaging.
|
Aug 2017
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[12573]
Abstract: Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. µSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using µSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850–1000 cm−1 and 3050–2750 cm−1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue – like 1170 cm−1 (υas(C-O-S)) and 1380 cm−1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm−1 and 1240 cm−1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2−) and νasym(PO2−) respectively, which were less specific for this layer. The use of µSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very early phase of aortic valve calcific degeneration.
|
Jul 2017
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[12717]
Abstract: Fourier transform infrared micro-spectroscopy provides an effective means of performing rapid, non-destructive, and label-free analysis of specimens according to their vibrational modes. However, as water absorbs very strongly in the infrared region, analysis of aqueous solutions in transmission mode can suffer from problems with signal saturation. We here describe the fabrication of a novel microfluidic device that overcomes this problem. Devices with channel depths of just 3 µm were constructed from calcium fluoride using photolithography and hot embossing bonding, where calcium fluoride was selected due to its transparency in the IR region. The utility of this device was then demonstrated by employing it to follow the precipitation pathways of calcium sulfate and calcium carbonate using synchrotron FTIR micro-spectroscopy. Importantly, due to the high brightness provided by synchrotron radiation, and the fact that the reacting ions (HCO3- , CO32- and SO42-) and the different mineral polymorphs all have finger print spectra in the measured IR range, this method can be used to acquire time-resolved, hyperspectral maps of the mineral particles formed within the sample cell, and then study the interaction and evolution of particles. The data provide new insight into the formation pathway of a population of crystals in confined volumes, and demonstrate that this in situ, real-time detection system provides a powerful tool for studying crystallization processes.
|
Mar 2017
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Abstract: Over the last few years, both synchrotron-based FTIR (S-FTIR) and Raman microspectroscopies have helped to better understand the effects of drugs on cancer cells. However, cancer is a mixture of cells with different sensitivity/resistance to drugs. Furthermore, the effects of drugs on cells produce both chemical and morphological changes, the latter could affect the spectra of cells incubated with drugs. Here, we successfully cloned sensitive and resistant leukaemia cells to nilotinib, a drug used in the management of leukaemia. This allowed both the study of a more uniform population and the study of sensitive and resistant cells prior to the addition of the drug with both S-FTIR and Raman microspectroscopies. The incubation with nilotinib produced changes in the S-FTIR and Raman spectra of both sensitive and resistant clones to nilotinib. Principal component analysis was able to distinguish between cells incubated in the absence or presence of the drug, even in the case of resistant clones. The latter would confirm that the spectral differences between the so-called resistant clonal cells prior to and after adding a drug might reside on those more or less sensitive cells that have been able to remain alive when they were collected to be studied with S-FTIR or Raman microspectroscopies. The data presented here indicate that the methodology of cell cloning can be applied to different types of malignant cells. This should facilitate the identification of spectral biomarkers of sensitivity/resistance to drugs. The next step would be a better assessment of sensitivity/resistance of leukaemia cells from patients which could guide clinicians to better tailor treatments to each individual patient.
|
Dec 2016
|
|