I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Joshua B. R.
White
,
Augustinas
Silale
,
Matthew
Feasey
,
Tiaan
Heunis
,
Yiling
Zhu
,
Hong
Zheng
,
Akshada
Gajbhiye
,
Susan
Firbank
,
Arnaud
Basle
,
Matthias
Trost
,
David N.
Bolam
,
Bert
Van Den Berg
,
Neil A.
Ranson
Diamond Proposal Number(s):
[306, 1221, 13587, 18598]
Abstract: Bacteroidetes are abundant members of the human microbiota, utilizing a myriad of diet- and host-derived glycans in the distal gut. Glycan uptake across the bacterial outer membrane of these bacteria is mediated by SusCD protein complexes, comprising a membrane-embedded barrel and a lipoprotein lid, which is thought to open and close to facilitate substrate binding and transport. However, surface-exposed glycan-binding proteins and glycoside hydrolases also play critical roles in the capture, processing and transport of large glycan chains. The interactions between these components in the outer membrane are poorly understood, despite being crucial for nutrient acquisition by our colonic microbiota. Here we show that for both the levan and dextran utilization systems of Bacteroides thetaiotaomicron, the additional outer membrane components assemble on the core SusCD transporter, forming stable glycan-utilizing machines that we term utilisomes. Single-particle cryogenic electron microscopy structures in the absence and presence of substrate reveal concerted conformational changes that demonstrate the mechanism of substrate capture, and rationalize the role of each component in the utilisome.
|
Jun 2023
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Alan
Cartmell
,
Elisabeth C.
Lowe
,
Arnaud
Basle
,
Susan J.
Firbank
,
Didier A.
Ndeh
,
Heath
Murray
,
Nicolas
Terrapon
,
Vincent
Lombard
,
Bernard
Henrissat
,
Jeremy E.
Turnbull
,
Mirjam
Czjzek
,
Harry J.
Gilbert
,
David N.
Bolam
Diamond Proposal Number(s):
[311, 9948]
Open Access
Abstract: The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron, a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides, indicating that the model developed is of generic relevance to this important microbial community.
|
Jul 2017
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Amy J.
Glenwright
,
Karunakar R.
Pothula
,
Satya P.
Bhamidimarri
,
Dror S.
Chorev
,
Arnaud
Basle
,
Susan J.
Firbank
,
Hongjun
Zheng
,
Carol V.
Robinson
,
Mathias
Winterhalter
,
Ulrich
Kleinekathöfer
,
David N.
Bolam
,
Bert
Van Den Berg
Diamond Proposal Number(s):
[9948]
Abstract: The human large intestine is populated by a high density of microorganisms, collectively termed the colonic microbiota1, which has an important role in human health and nutrition2. The survival of microbiota members from the dominant Gram-negative phylum Bacteroidetes depends on their ability to degrade dietary glycans that cannot be metabolized by the host3. The genes encoding proteins involved in the degradation of specific glycans are organized into co-regulated polysaccharide utilization loci4, 5, 6, 7, 8, with the archetypal locus sus (for starch utilisation system) encoding seven proteins, SusA–SusG8, 9, 10. Glycan degradation mainly occurs intracellularly and depends on the import of oligosaccharides by an outer membrane protein complex composed of an extracellular SusD-like lipoprotein and an integral membrane SusC-like TonB-dependent transporter4, 5, 6, 7, 11, 12, 13. The presence of the partner SusD-like lipoprotein is the major feature that distinguishes SusC-like proteins from previously characterized TonB-dependent transporters. Many sequenced gut Bacteroides spp. encode over 100 SusCD pairs, of which the majority have unknown functions and substrate specificities3, 8, 14, 15. The mechanism by which extracellular substrate binding by SusD proteins is coupled to outer membrane passage through their cognate SusC transporter is unknown. Here we present X-ray crystal structures of two functionally distinct SusCD complexes purified from Bacteroides thetaiotaomicron and derive a general model for substrate translocation. The SusC transporters form homodimers, with each β-barrel protomer tightly capped by SusD. Ligands are bound at the SusC–SusD interface in a large solvent-excluded cavity. Molecular dynamics simulations and single-channel electrophysiology reveal a ‘pedal bin’ mechanism, in which SusD moves away from SusC in a hinge-like fashion in the absence of ligand to expose the substrate-binding site to the extracellular milieu. These data provide mechanistic insights into outer membrane nutrient import by members of the microbiota, an area of major importance for understanding human–microbiota symbiosis.
|
Jan 2017
|
|
I04-Macromolecular Crystallography
|
Open Access
Abstract: The copper metallochaperone Atx1 and the N-terminal metalbinding domain of a copper-transporting ATP-ase can form tight Zn(II)-mediated hetero-complexes in both cyanobacteria and humans. Copper and zinc homeostasis could be linked by metal binding to these CXXC-containing proteins.
|
Sep 2013
|
|
I02-Macromolecular Crystallography
|
Open Access
Abstract: zinc and copper are required by proteins with very different functions, these metals can be delivered to cellular locations by homologous metal transporters within the same organism, as demonstrated by the cyanobacterial (Synechocystis PCC 6803) zinc exporter ZiaA and thylakoidal copper importer PacS. The N-terminal metal-binding domains of these transporters (ZiaAN and PacSN, respectively) have related ferredoxin folds also found in the metallochaperone Atx1, which delivers copper to PacS, but differ in the residues found in their M/IXCXXC metal-binding motifs.
|
Sep 2013
|
|
I04-Macromolecular Crystallography
|
Abstract: Methanobactins (mbs) are a class of copper-binding peptides produced by aerobic methane oxidizing bacteria (methanotrophs) that have been linked to the substantial copper needs of these environmentally important microorganisms. The only characterized mbs are those from Methylosinus trichosporium OB3b and Methylocystis strain SB2. M. trichosporium OB3b produces a second mb (mb-Met), which is missing the C-terminal Met residue from the full-length form (FL-mb). The as-isolated copper-loaded mbs bind Cu(I). The absence of the Met has little influence on the structure of the Cu(I) site, and both molecules mediate switchover from the soluble iron methane mono-oxygenase to the particulate copper-containing enzyme in M. trichosporium OB3b cells. Cu(II) is reduced in the presence of the mbs under our experimental conditions, and the disulfide plays no role in this process. The Cu(I) affinities of these molecules are extremely high with values of (6?7) × 1020 M?1 determined at pH ? 8.0. The affinity for Cu(I) is 1 order of magnitude lower at pH 6.0. The reduction potentials of copper-loaded FL-mb and mb-Met are 640 and 590 mV respectively, highlighting the strong preference for Cu(I) and indicating different Cu(II) affinities for the two forms. Cleavage of the disulfide bridge results in a decrease in the Cu(I) affinity to ?9 × 1018 M?1 at pH 7.5. The two thiolates can also bind Cu(I), albeit with much lower affinity (? 3 × 1015 M?1 at pH 7.5). The high affinity of mbs for Cu(I) is consistent with a physiological role in copper uptake and protection.
|
Jan 2011
|
|
I03-Macromolecular Crystallography
|
Open Access
Abstract: A copper-trafficking pathway was found to enable Cu2+ occupancy of a soluble periplasm protein, CucA, even when competing Zn2+ is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu2+, but not Zn2+, quenches the fluorescence of Trp165, which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn2+ following exposure to equimolar Zn2+ and Cu2+. Cu2+-CucA is more thermodynamically stable than Zn2+-CucA but k(Zn→Cu)exchange is slow, raising questions about how the periplasm contains solely the Cu2+ form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu2+-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low Mr copper complexes in the periplasm, and purified apoCucA can readily acquire Cu2+ from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm.
|
Oct 2010
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
|
Abstract: Molecular systems have evolved to permit the safe delivery of copper. Despite extensive studies, many copper site structures involved in copper homeostasis, even for the well-studied metallochaperone Atx1, remain unresolved. Cyanobacteria import copper to their thylakoid compartments for use in photosynthesis and respiration and possess an Atx1 that we show can adopt multiple oligomeric states when metalated, capable of binding up to four copper ions. Two-copper- and four-copper-loaded dimers exist in solution at low micromolar concentrations, and head-to-head and side-to-side arrangements, respectively, can be crystallized, with the latter binding a [Cu4{?2-S?(Cys)}4Cl2]2? cluster. The His61Tyr mutation on loop 5 weakens head-to-head dimerization, yet a side-to-side dimer binding a similar cluster as in the wild-type protein, but with phenolate coordination, is present. The cognate metal-binding domains (MBDs) of the P-type ATPases CtaA and PacS, which are proposed to donate copper to and accept copper from Atx1, respectively, are monomeric in the presence of copper. The structure of the MBD of Cu(I)-PacS shows a crystallographic trimer arrangement around a [Cu3{?2-S?(Cys)}3{S?(Cys)}3]2? cluster that is very similar to that found for an alternate form of the His61Tyr Atx1 mutant. Copper transfer from the MBD of CtaA to Atx1 is favorable, but delivery from Atx1 to the MBD of PacS is strongly dependent upon the dimeric form of Atx1. A copper-induced switch in Atx1 dimer structure may have a regulatory role with cluster formation helping to buffer copper.
|
Aug 2010
|
|
I04-Macromolecular Crystallography
|
Abstract: Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describe uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein−DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase−base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at position 2 explains the stimulation of the polymerase 3′−5′ proofreading exonuclease, observed with deaminated bases at this location. A β-hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double-stranded DNA. This denatures the two complementary primer bases and directs the resulting 3′ single-stranded extension toward the exonuclease active site. Finally, the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using nonpolar isosteres. Affinity for both 2,4-difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine, respectively, is strongly diminished, suggesting polar protein−base contacts are important. However, residual interaction with 2,4-difluorobenzene is seen, confirming a role for shape recognition.
|
Jun 2010
|
|
I04-Macromolecular Crystallography
|
Abstract: The intestinal microbiota impacts many facets of human health and is associated with human diseases. Diet impacts microbiota composition, yet mechanisms that link dietary changes to microbiota alterations remain ill-defined. Here we elucidate the basis of Bacteroides proliferation in response to fructans, a class of fructose-based dietary polysaccharides. Structural and genetic analysis disclosed a fructose-binding, hybrid two-component signaling sensor that controls the fructan utilization locus in Bacteroides thetaiotaomicron. Gene content of this locus differs among Bacteroides species and dictates the specificity and breadth of utilizable fructans. BT1760, an extracellular β2-6 endo-fructanase, distinguishes B. thetaiotaomicron genetically and functionally, and enables the use of the β2-6-linked fructan levan. The genetic and functional differences between Bacteroides species are predictive of in vivo competitiveness in the presence of dietary fructans. Gene sequences that distinguish species' metabolic capacity serve as potential biomarkers in microbiomic datasets to enable rational manipulation of the microbiota via diet.
|
Jun 2010
|
|