B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Diamond Proposal Number(s):
[26588]
Abstract: Porous boron nitride (BN) has proven promising as a novel class of inorganic materials in the field of separations and particularly adsorption. Owing to its high surface area and thermal stability, porous BN has been researched for CO2 capture and water cleaning, for instance. However, research remains at the laboratory scale due to a lack of understanding of the formation mechanism of porous BN, which is largely a “black box” and prevents scale up. Partial reaction pathways have been unveiled, but they omit critical steps in the formation, including the porosity development, which is key to adsorption. To unlock the potential of porous BN at a larger scale, we have investigated its formation from the perspective of both chemical formation and porosity development. We have characterized reaction intermediates obtained at different temperatures with a range of analytical and spectroscopic tools. Using these analyses, we propose a mechanism highlighting the key stages of BN formation, including intermediates and gaseous species formed in the process. We identified the crucial formation of nonporous carbon nitride to form porous BN with release of porogens, such as CO2. This work paves the way for the use of porous BN at an industrial level for gas and liquid separations.
|
Dec 2021
|
|
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Kieran W. P.
Orr
,
Sean M.
Collins
,
Emily M.
Reynolds
,
Frank
Nightingale
,
Hanna L. B.
Bostroem
,
Simon J.
Cassidy
,
Daniel M.
Dawson
,
Sharon E.
Ashbrook
,
Oxana
Magdysyuk
,
Paul A.
Midgley
,
Andrew L.
Goodwin
,
Hamish H.-M.
Yeung
Diamond Proposal Number(s):
[20946, 18786]
Open Access
Abstract: Control over the spatial distribution of components in metal–organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal–organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core–shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core–shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.
|
Feb 2021
|
|
I13-1-Coherence
|
Diamond Proposal Number(s):
[7654, 7277]
Open Access
Abstract: Soluble additives provide a versatile strategy for controlling crystallization processes, enabling selection of properties including crystal sizes, morphologies, and structures. The additive species can also be incorporated within the crystal lattice, leading for example to enhanced mechanical properties. However, while many techniques are available for analyzing particle shape and structure, it remains challenging to characterize the structural inhomogeneities and defects introduced into individual crystals by these additives, where these govern many important material properties. Here, we exploit Bragg coherent diffraction imaging to visualize the effects of soluble additives on the internal structures of individual crystals on the nanoscale. Investigation of bio-inspired calcite crystals grown in the presence of lysine or magnesium ions reveals that while a single dislocation is observed in calcite crystals grown in the presence of lysine, magnesium ions generate complex strain patterns. Indeed, in addition to the expected homogeneous solid solution of Mg ions in the calcite lattice, we observe two zones comprising alternating lattice contractions and relaxation, where comparable alternating layers of high magnesium calcite have been observed in many magnesium calcite biominerals. Such insight into the structures of nanocomposite crystals will ultimately enable us to understand and control their properties.
|
Nov 2018
|
|
I11-High Resolution Powder Diffraction
|
Lauren N.
Mchugh
,
Matthew J.
Mcpherson
,
Laura J.
Mccormick
,
Samuel A.
Morris
,
Paul S.
Wheatley
,
Simon J.
Teat
,
David
Mckay
,
Daniel M.
Dawson
,
Charlotte E. F.
Sansome
,
Sharon E.
Ashbrook
,
Corinne A.
Stone
,
Martin W.
Smith
,
Russell E.
Morris
Abstract: Highly porous metal–organic frameworks (MOFs), which have undergone exciting developments over the past few decades, show promise for a wide range of applications. However, many studies indicate that they suffer from significant stability issues, especially with respect to their interactions with water, which severely limits their practical potential. Here we demonstrate how the presence of ‘sacrificial’ bonds in the coordination environment of its metal centres (referred to as hemilability) endows a dehydrated copper-based MOF with good hydrolytic stability. On exposure to water, in contrast to the indiscriminate breaking of coordination bonds that typically results in structure degradation, it is non-structural weak interactions between the MOF’s copper paddlewheel clusters that are broken and the framework recovers its as-synthesized, hydrated structure. This MOF retained its structural integrity even after contact with water for one year, whereas HKUST-1, a compositionally similar material that lacks these sacrificial bonds, loses its crystallinity in less than a day under the same conditions.
|
Aug 2018
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[14239, 13284]
Abstract: The rhodium(III) hydrogarnets Ca3Rh2(OH)12 and Sr3Rh2(OH)12 crystallize as polycrystalline powders under hydrothermal conditions at 200 °C from RhCl3·3H2O and either Ca(OH)2 or Sr(OH)2 in either 12 M NaOH or KOH. Rietveld refinements against synchrotron powder X-ray diffraction (XRD) data allow the first crystal structures of the two materials to be determined. If BaO2 is used as a reagent and the concentration of hydroxide increased to hydroflux conditions (excess NaOH), then single crystals of a new complex rhodium hydroxide, BaNaRh(OH)6, are formed in a phase-pure sample, with sodium included from the flux. Structure solution from single-crystal XRD data reveals isolated octahedral Rh centers that share hydroxides with 10-coordinate Ba and two independent 8-coordinate Na sites. 23Na magic-angle spinning NMR confirms the presence of the two crystallographically distinct Na sites and also verifies the diamagnetic nature of the sample, expected for Rh(III). The thermal behavior of the hydroxides on heating in air was investigated using X-ray thermodiffractometry, showing different decomposition pathways for each material. Ca3Rh2(OH)12 yields CaRh2O4 and CaO above 650 °C, from which phase-pure CaRh2O4 is isolated by washing with dilute nitric acid, a material previously only reported by high-pressure or high-temperature synthesis. Sr3Rh2(OH)12 decomposes to give a less crystalline material with a powder XRD pattern that is matched to the 2H-layered hexagonal perovskite Sr6Rh5O15, which contains mixed-valent Rh3+/4+, confirmed by Rh K-edge XANES spectroscopy. On heating BaNaRh(OH)6, a complex set of decomposition events takes place via transient phases.
|
Aug 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[11070]
Open Access
Abstract: The templated zeolite-analogue GaPO-34 (CHA structure type) crystallises from a gel precursor Ga2O3:2H3PO4:1HF:1.7SDA:70H2O (where SDA = structure directing agent), treated hydrothermally for 24 hours at 170 °C using either pyridine or 1-methylimizadole as SDA and one of either poorly crystalline ε-Ga2O3 or γ-Ga2O3 as gallium precursor. If the same gels are stirred for periods shorter than 2 hours but treated under identical hydrothermal conditions, then a second phase crystallises, free of GaPO-34. If β-Ga2O3 is used as a reagent only the second phase is found to crystallise, irrespective of gel aging time. The competing phase, which we denote GaPO-34A, has been structurally characterised using synchrotron powder X-ray diffraction for the pyridine material, GaPO-34A(pyr), and using single-crystal X-ray diffraction for the 1-methylimiazole material, GaPO-34A(mim). The structure of GaPO-34A(pyr), P1 , a = 10.22682(6) Å, b = 12.09585(7) Å, c = 13.86713(8) Å, α = 104.6531(4) °, β = 100.8111(6) °, γ = 102.5228(6) °, contains 7 unique gallium sites and 6 phosphorus sites, with empirical formula [Ga7P6O24(OH)2F3(H2O)2].2(C5NH6). GaPO-34A(mim) is isostructural but is modelled as a half volume unit cell, P1 , a = 5.0991(2) Å, b = 12.0631(6) Å, c = 13.8405(9) Å, α = 104.626(5) °, β = 100.346(5) °, γ = 101.936(4) °, with a gallium and a bridging fluoride partially occupied and two partially occupied SDA sites. Solid-state 31P and 71Ga NMR spectroscopy confirms the structural complexity of GaPO-34A with signals resulting from overlapping lineshapes from multiple Ga and P sites, while 1H and 13C solid-state NMR spectra confirm the presence of the protonated SDA and provide evidence for disorder in the SDA. The protonated SDA is located in 14-ring one-dimensional channels with hydrogen bonding deduced from the SDA nitrogens to framework oxygen distances. Upon thermal treatment to investigate SDA removal, structure collapse occurs, which may be due the large number of bridging hydroxides and fluorides in the as-made material, and the unequal amounts of gallium and phosphorus present.
|
Nov 2017
|
|
I11-High Resolution Powder Diffraction
|
Samuel A.
Morris
,
Giulia P. M.
Bignami
,
Yuyang
Tian
,
Marta
Navarro
,
Daniel S.
Firth
,
Jiří
Čejka
,
Paul S.
Wheatley
,
Daniel M.
Dawson
,
Wojciech A.
Slawinski
,
David S.
Wragg
,
Russell E.
Morris
,
Sharon E.
Ashbrook
Abstract: The assembly–disassembly–organization–reassembly (ADOR) mechanism is a recent method for preparing inorganic framework materials and, in particular, zeolites. This flexible approach has enabled the synthesis of isoreticular families of zeolites with unprecedented continuous control over porosity, and the design and preparation of materials that would have been difficult—or even impossible—to obtain using traditional hydrothermal techniques. Applying the ADOR process to a parent zeolite with the UTL framework topology, for example, has led to six previously unknown zeolites (named IPC-n, where n = 2, 4, 6, 7, 9 and 10). To realize the full potential of the ADOR method, however, a further understanding of the complex mechanism at play is needed. Here, we probe the disassembly, organization and reassembly steps of the ADOR process through a combination of in situ solid-state NMR spectroscopy and powder X-ray diffraction experiments. We further use the insight gained to explain the formation of the unusual structure of zeolite IPC-6.
|
Apr 2017
|
|
B18-Core EXAFS
|
Laura
Mitchell
,
Patrick
Williamson
,
Barbora
Ehrlichová
,
Amanda E.
Anderson
,
Valerie R.
Seymour
,
Sharon E.
Ashbrook
,
Nadia
Acerbi
,
Luke
Daniels
,
Richard
Walton
,
Matthew L.
Clarke
,
Paul
Wright
Diamond Proposal Number(s):
[8708]
Abstract: The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL-100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X-ray diffraction (PXRD) and solid-state NMR, UV/Vis, and X-ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL-100 samples were prepared in which part of the Fe is present as α-Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed-metal catalysts in Lewis acid catalysed FriedelCrafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed-metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α-Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL-100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed-metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.
|
Dec 2014
|
|
B18-Core EXAFS
|
Abstract: Perovskites of nominal composition NaCe1?xLaxTi2O6 (0?x?1) crystallise directly under hydrothermal conditions at 240 °C. Raman spectroscopy shows distortion from the ideal cubic structure and Rietveld analysis of powder X-ray and neutron diffraction reveals that the materials represent a continuous series in rhombohedral space group R3?c. Ce LIII-edge X-ray absorption near edge structure spectroscopy shows that while the majority of cerium is present as Ce3+ there is evidence for Ce4+. The paramagnetic Ce3+ affects the chemical shift and line width of 23Na MAS NMR spectra, which also show with no evidence for A-site ordering. 2H MAS NMR of samples prepared in D2O shows the inclusion of deuterium, which IR spectroscopy shows is most likely to be as D2O. The deuterium content is highest for the cerium-rich materials, consistent with oxidation of some cerium to Ce4+ to provide charge balance of A-site water.
|
Oct 2013
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[6108]
Abstract: The crystal structure of NaNbO3 has been studied in detail in the temperature regime 360 < T < 520 °C using a combination of high-resolution neutron and synchrotron X-ray powder diffraction, supported by first-principles calculations. A systematic symmetry-mode analysis is used to determine the presence of the key active distortion modes that, in turn, provides a small and an unambiguous set of trial structural models. A unique model for Phase S (480 < T < 510 °C) is elucidated, having a 2 × 2 × 4 superlattice of the aristotype perovskite structure, space group Pmmn. This unusual and unique structure features a novel example of a compound octahedral tilt system in a perovskite. Two possible structural models for Phase R (370 < T < 470 °C) are determined, each having a 2 × 2 × 6 superlattice and differing only in the nature of the complex tilt system along the ‘long’ axis. It is impossible to identify a definitive model from the present study, although reasons for preferring one over the other are discussed. Some of the possible pitfalls in determining such complex, pseudosymmetric crystal structures from powder diffraction data are also highlighted.
|
Jun 2012
|
|