I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[15833]
Open Access
Abstract: The solid state supramolecular interactions of diketopyrrolopyrrole derivatives (DPPs) and their correlation with thin film optical properties are of particular interest because of the applications of these materials in organic electronics. In this study, we report the single crystal X-ray structures of several phenyl DPP derivatives, containing 4-methoxyphenyl, 4-hydroxyphenyl and 4-((tetrahydro-2H-pyran-2-yl)oxy)phenyl aryl units, and show how subtle changes in the substituent chains at side or end positions of the chromophore can lead to very different packing. They are compared to their phenyl counterpart to explore how the nature of both the alkyl chain and the aryl unit influence the optical properties that have been measured in solid and solution states. Importantly, for the three families of N-substituted compounds studied, the structures are changed by the conformation of the molecules and are apparently dominated by crystal packing effects where edge-to-face interactions are favoured rather than π stacking, with only one of the compounds showing a flat form, promoted by intermolecular contacts between the aromatic regions. It is therefore possible that the twist between DPP and phenyl units in crystals of DPPs results from edge-to-face interactions (rather than steric interactions between the N-substituent and the protons attached to the aromatic ring) that might be overcome in more extended structures. Hydrogen bonding dominates the packing to generate chains of DPP units for phenol derivatives. Remote bulky groups do affect the core conformation. The emission of the materials as thin films is dominated by local effects in the packing of the materials that are unique for each case as the structures are distinct from one another. Charge mobility (as calculated from the crystal structures) is not favoured because of twisted conformations and large displacement, but the sometimes high emission and large Stokes shift could make the materials interesting for other purposes, such as light emitters.
|
Feb 2021
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[21755, 8786]
Open Access
Abstract: We report four new A-site vacancy ordered thiocyanate double double perovskites,A1–x{Ni[Bi(SCN)6](1–x)/3}, A = K+, NH4+, CH3(NH3)+ (MeNH3+) and C(NH2)3+ (Gua+), includingthe first examples of thiocyanate perovskites containing organic A-site cations. We show, usinga combination of X-ray and neutron diffraction, that the structure of these frameworks dependson the A-site cation, and that these frameworks possess complex vacancy-ordering patterns andcooperative octahedral tilts distinctly different from atomic perovskites. Density functional theorycalculations uncover the energetic origin of these complex orders and allow us to propose asimple rule to predict favoured A-site cation orderings for a given tilt sequence. We use theseinsights, in combination with symmetry mode analyses, to show that these complex orders offera new route to non-centrosymmetric perovskites which render them as excellent candidates forpiezo- and ferroelectric applications.
|
Jan 2021
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Stephen P.
Argent
,
Ivan
Da Silva
,
Alex
Greenaway
,
Mathew
Savage
,
Jack
Humby
,
Andrew J.
Davies
,
Harriott
Nowell
,
William
Lewis
,
Pascal
Manuel
,
Chiu C.
Tang
,
Alexander J.
Blake
,
Michael W.
George
,
Alexander V.
Markevich
,
Elena
Besley
,
Sihai
Yang
,
Neil R.
Champness
,
Martin
Schroeder
Diamond Proposal Number(s):
[861, 11622, 15833, 9443]
Open Access
Abstract: Designing porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial goal which requires an understanding of the host–guest interactions involved at the atomic scale. Metal–organic polyhedra (MOPs) showing permanent porosity upon desolvation are rarely observed. We report a family of MOPs (Cu-1a, Cu-1b, Cu-2), which derive their permanent porosity from cavities between packed cages rather than from within the polyhedra. Thus, for Cu-1a, the void fraction outside the cages totals 56% with only 2% within. The relative stabilities of these MOP structures are rationalized by considering their weak nondirectional packing interactions using Hirshfeld surface analyses. The exceptional stability of Cu-1a enables a detailed structural investigation into the adsorption of CO2 and CH4 using in situ X-ray and neutron diffraction, coupled with DFT calculations. The primary binding sites for adsorbed CO2 and CH4 in Cu-1a are found to be the open metal sites and pockets defined by the faces of phenyl rings. More importantly, the structural analysis of a hydrated sample of Cu-1a reveals a strong hydrogen bond between the adsorbed CO2 molecule and the Cu(II)-bound water molecule, shedding light on previous empirical and theoretical observations that partial hydration of metal−organic framework (MOF) materials containing open metal sites increases their uptake of CO2. The results of the crystallographic study on MOP–gas binding have been rationalized using DFT calculations, yielding individual binding energies for the various pore environments of Cu-1a.
|
Oct 2020
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[19876]
Open Access
Abstract: The aldol condensation of indane-1,3-dione (ID) to give ‘bindone’ in water is catalysed by an M8L12 cubic coordination cage (Hw). The absolute rate of reaction is slow under weakly acidic conditions (pH 3–4), but in the absence of a catalyst it is undetectable. In water, the binding constant of ID in the cavity of Hw is ca. 2.4(±1.2) × 103 M−1, giving a ∆G for the binding of −19.3(±1.2) kJ mol−1. The crystal structure of the complex revealed the presence of two molecules of the guest ID stacked inside the cavity, giving a packing coefficient of 74% as well as another molecule hydrogen-bonded to the cage’s exterior surface. We suggest that the catalysis occurs due to the stabilisation of the enolate anion of ID by the 16+ surface of the cage, which also attracts molecules of neutral ID to the surface because of its hydrophobicity. The cage, therefore, brings together neutral ID and its enolate anion via two different interactions to catalyse the reaction, which—as the control experiments show—occurs at the exterior surface of the cage and not inside the cage cavity.
|
Jan 2020
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[19876]
Abstract: A crystallographic investigation of a series of host/guest complexes in which small‐molecule organic guests occupy the central cavity of an approximately cubic M 8 L 12 coordination cage has revealed some unexpected behaviour. Whilst some guests form 1:1 H•G complexes as we have seen before, an extensive family of bicyclic guests – including some substituted coumarins and various saturated analogues – form 1:2 H•G 2 complexes in the solid state, despite the fact that solution titrations are consistent with 1:1 complex formation, and the combined volume of the pair of guests significantly exceeds the Rebek 55±9% packing for optimal guest binding, with packing coefficients of up to 87%. Re‐examination of solution titration data for guest binding in two cases showed that, although conventional fluorescence titrations are consistent with 1:1 binding model, alternative forms of analysis – Job plot and an NMR titration – at higher concentrations do provide evidence for 1:2 H•G 2 complex formation. The observation of guests binding in pairs in some cases opens up new possibilities for altered reactivity of bound guests, and also highlights the recently‐articulated difficulties associated with determining stoichiometry of supramolecular complexes in solution.
|
Dec 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[19876]
Abstract: The hydrophobic central cavity of a water‐soluble M8L12 cubic coordination cage can accommodate a range of phospho‐diester and phospho‐triester guests such as the insecticide 'dichlorvos' (2,2‐dichlorovinyl dimethyl phosphate) and the chemical warfare agent analogue diisopropyl chlorophosphate. The accumulation of hydroxide ions around the cationic cage surface due to ion‐pairing in solution generates a high local pH around the cage, resulting in catalysed hydrolysis of the phospho‐triester guests. A series of control experiments unexpectedly demonstrates that – in marked contrast to previous cases – it is not necessary for the phospho‐triester substrates to be bound inside the cavity for catalysed hydrolysis to occur. This suggests that catalysis can occur on the exterior surface of the cage as well as the interior surface, with the exterior‐binding catalysis pathway dominating here because of the small binding constants for these phospho‐triester substrates in the cage cavity. These observations suggest that cationic but hydrophobic surfaces could act as quite general catalysts in water by bringing substrates into contact with the surface (via the hydrophobic effect) where there is also a high local concentration of anions (due to ion‐pairing / electrostatic effects).
|
Nov 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Gemma L.
Smith
,
Jennifer E.
Eyley
,
Xue
Han
,
Xinran
Zhang
,
Jiangnan
Li
,
Nicholas M.
Jacques
,
Harry G. W.
Godfrey
,
Stephen P.
Argent
,
Laura J.
Mccormick Mcpherson
,
Simon J.
Teat
,
Yongqiang
Cheng
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Chiu C.
Tang
,
Timothy L.
Easun
,
Svemir
Rudic
,
Anibal J.
Ramirez-cuesta
,
Sihai
Yang
,
Martin
Schroeder
Abstract: Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4′,4‴-(pyridine-3,5-diyl)bis([1,1′-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g−1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(ii) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.
|
Oct 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[21755]
Abstract: We show that the azamacrocycle ‘cyclam’ (1,4,8,11-tetraazacyclodecane) in conjunction with a silicon catecholate ion generates novel hollow tetragonal tube-like crystalline materials [(C6H4O2)3Si][C10H26N4]·H2O, whose dimensions can be tuned according to the pH of the reaction medium. The synthesis approach was successful for both silicon and germanium and we hypothesise that a range of other catecholate precursors of elements such as iron could be used to generate a large array of inorganic materials with interesting morphologies. The synthesis approach can be extended to tertiary diamines with functional group spacing playing an important role in the efficacy of complexation. Of the molecules explored to date, a C2 spacing (N,N,N′,N′-tetramethylethylenediamine (4MEDAE)), leads to the most efficient structure control with hollow hexagonal tube-like structures being formed. In addition, we show that azamacrocycles, in the presence of unbuffered tetramethoxysilane (TMOS) solutions can be used to manipulate silica formation and provide a fast (ca. 10 minutes) synthesis route to particles whose diameter can be tuned from ca. 20 nm to several hundreds of nm under reaction conditions (no extremes of pH) that make the sols suitable for direct use in biotechnological applications.
|
Jun 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[19876]
Abstract: A heterometallic octanuclear coordination cage [Os4Zn4(Lnap)12]X16 (denoted Os•Zn; X = perchlorate or chloride) has been prepared (Lnap is a bis-bidentate bridging ligand containing two pyrazolyl–pyridine chelating units separated by a 1,5-naphthalenediyl spacer group). The {Os(NN)3}2+ units located at four of the eight vertices of the cube have a long-lived, phosphorescent 3MLCT excited state which is a stronger electron donor than [Ru(bipy)3]2+. The chloride form of Os•Zn is water-soluble and binds in its central cavity the hydrophobic electron-accepting organic guests 1,2,4,5-tetracyanobenzene, 1,4-naphthoquinone and 1-nitronaphthalene, with binding constants in the range 103–104 M–1, resulting in quenching of the phosphorescence arising from the Os(II) units. A crystal structure of an isostructural Co8 cage containing one molecule of 1,2,4,5-tetracyanobenzene as a guest inside the cavity has been determined. Ultrafast transient absorption measurements show formation of a charge-separated Os(III)/guest•– state arising from cage-to-guest photoinduced electron transfer; this state is formed within 13–21 ps, and decays on a time scale of ca. 200 ps. In the presence of a competing guest with a large binding constant (cycloundecanone) which displaces each electron-accepting quencher from the cage cavity, the charge-separated state is no longer observed. Further, a combination of mononuclear {Os(NN)3}2+ model complexes with the same electron-accepting species showed no evidence for formation of charge-separated Os(III)/guest•– states. These two control experiments indicate that the {Os(NN)3}2+ chromophores need to be assembled into the cage structure to bind the electron-accepting guests, and for PET to occur. These results help to pave the way for use of photoactive coordination cages as hosts for photoredox catalysis reactions on bound guests.
|
Jan 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
Peter
Rought
,
Christopher
Marsh
,
Simona
Pili
,
Ian P.
Silverwood
,
Victoria
Garcia Sakai
,
Ming
Li
,
Martyn
Brown
,
Stephen P.
Argent
,
Inigo
Vitorica-yrezabal
,
George
Whitehead
,
Mark R.
Warren
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[13650, 12517]
Open Access
Abstract: Three multi-carboxylic acid functionalised ligands have been designed, synthesised and utilised to synthesise the new barium-based MOFs, MFM-510, -511, and -512, which show excellent stability to water-vapour. MFM-510 and MFM-511 show moderate proton conductivities (2.1 x10-5 and 5.1 x10-5 S cm-1, respectively) at 99RH% and 298 K, attributed to the lack of free protons or hindered proton diffusion within the framework structures. In contrast, MFM-512, which incorporates a pendant carboxylic acid group directed into the pore of the framework, shows a two orders of magnitude enhancement in proton conductivity (2.9 x10-3 S cm-1). Quasi-elastic neutron scattering (QENS) suggests that the proton dynamics of MFM-512 are mediated by “free diffusion inside a sphere” confirming that incorporation of free carboxylic acid groups within the pores of MOFs is an efficient albeit a synthetically challenging strategy to improve proton conductivity.
|
Nov 2018
|
|