E01-JEM ARM 200CF
|
Raj
Pandya
,
Richard Y. S.
Chen
,
Qifei
Gu
,
Jooyoung
Sung
,
Christoph
Schnedermann
,
Oluwafemi S.
Ojambati
,
Rohit
Chikkaraddy
,
Jeffrey
Gorman
,
Gianni
Jacucci
,
Olimpia D.
Onelli
,
Tom
Willhammar
,
Duncan N.
Johnstone
,
Sean M.
Collins
,
Paul A.
Midgley
,
Florian
Auras
,
Tomi
Baikie
,
Rahul
Jayaprakash
,
Fabrice
Mathevet
,
Richard
Soucek
,
Matthew
Du
,
Antonios M.
Alvertis
,
Arjun
Ashoka
,
Silvia
Vignolini
,
David G.
Lidzey
,
Jeremy J.
Baumberg
,
Richard H.
Friend
,
Thierry
Barisien
,
Laurent
Legrand
,
Alex W.
Chin
,
Joel
Yuen-Zhou
,
Semion K.
Saikin
,
Philipp
Kukura
,
Andrew J.
Musser
,
Akshay
Rao
Diamond Proposal Number(s):
[20527]
Open Access
Abstract: Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.
|
Nov 2021
|
|
I07-Surface & interface diffraction
|
Shuai
Yuan
,
Lin-Song
Cui
,
Linjie
Dai
,
Yun
Liu
,
Qing-Weii
Liu
,
Yu-Qi
Sun
,
Florian
Auras
,
Miguel
Anaya
,
Xiaopeng
Zheng
,
Edoardo
Ruggeri
,
You-Jun
Yu
,
Yang-Kun
Qu
,
Mojtaba
Abdi-Jalebi
,
Osman M.
Bakr
,
Zhao-Kui
Wang
,
Samuel D.
Stranks
,
Neil C.
Greenham
,
Liang-Sheng
Liao
,
Richard H.
Friend
Diamond Proposal Number(s):
[17223]
Open Access
Abstract: Metal halide perovskite semiconductors have demonstrated remarkable potentials in solution-processed blue light-emitting diodes (LEDs). However, the unsatisfied efficiency and spectral stability responsible for trap-mediated non-radiative losses and halide phase segregation remain the primary unsolved challenges for blue perovskite LEDs. In this study, it is reported that a fluorene-based π-conjugated cationic polymer can be blended with the perovskite semiconductor to control film formation and optoelectronic properties. As a result, sky-blue and true-blue perovskite LEDs with Commission Internationale de l'Eclairage coordinates of (0.08, 0.22) and (0.12, 0.13) at the record external quantum efficiencies of 11.2% and 8.0% were achieved. In addition, the mixed halide perovskites with the conjugated cationic polymer exhibit excellent spectral stability under external bias. This result illustrates that π-conjugated cationic polymers have a great potential to realize efficient blue mixed-halide perovskite LEDs with stable electroluminescence.
|
Sep 2021
|
|
E02-JEM ARM 300CF
|
Alexander J.
Sneyd
,
Tomoya
Fukui
,
David
Paleček
,
Suryoday
Prodhan
,
Isabella
Wagner
,
Yifan
Zhang
,
Jooyoung
Sung
,
Sean M.
Collins
,
Thomas J. A.
Slater
,
Zahra
Andaji-Garmaroudi
,
Liam R.
Macfarlane
,
J. Diego
Garcia-Hernandez
,
Linjun
Wang
,
George R.
Whittell
,
Justin M.
Hodgkiss
,
Kai
Chen
,
David
Beljonne
,
Ian
Manners
,
Richard H.
Friend
,
Akshay
Rao
Diamond Proposal Number(s):
[25140]
Open Access
Abstract: Efficient energy transport is desirable in organic semiconductor (OSC) devices. However, photogenerated excitons in OSC films mostly occupy highly localized states, limiting exciton diffusion coefficients to below ~10−2 cm2/s and diffusion lengths below ~50 nm. We use ultrafast optical microscopy and nonadiabatic molecular dynamics simulations to study well-ordered poly(3-hexylthiophene) nanofiber films prepared using living crystallization-driven self-assembly, and reveal a highly efficient energy transport regime: transient exciton delocalization, where energy exchange with vibrational modes allows excitons to temporarily re-access spatially extended states under equilibrium conditions. We show that this enables exciton diffusion constants up to 1.1 ± 0.1 cm2/s and diffusion lengths of 300 ± 50 nm. Our results reveal the dynamic interplay between localized and delocalized exciton configurations at equilibrium conditions, calling for a re-evaluation of exciton dynamics and suggesting design rules to engineer efficient energy transport in OSC device architectures not based on restrictive bulk heterojunctions.
|
Aug 2021
|
|
I09-Surface and Interface Structural Analysis
|
Zahra
Andaji-Garmaroudi
,
Mojtaba
Abdi-Jalebi
,
Felix U.
Kosasih
,
Tiarnan
Doherty
,
Stuart
Macpherson
,
Alan R.
Bowman
,
Gabriel J.
Man
,
Ute B.
Cappel
,
Hakan
Rensmo
,
Caterina
Ducati
,
Richard H.
Friend
,
Samuel D.
Stranks
Diamond Proposal Number(s):
[22668]
Abstract: Halide perovskites have attracted substantial interest for their potential as disruptive display and lighting technologies. However, perovskite light‐emitting diodes (PeLEDs) are still hindered by poor operational stability. A fundamental understanding of the degradation processes is lacking but will be key to mitigating these pathways. Here, a combination of in operando and ex situ measurements to monitor the performance degradation of (Cs0.06FA0.79MA0.15)Pb(I0.85Br0.15)3 PeLEDs over time is used. Through device, nanoscale cross‐sectional chemical mapping, and optical spectroscopy measurements, it is revealed that the degraded performance arises from an irreversible accumulation of bromide content at one interface, which leads to barriers to injection of charge carriers and thus increased nonradiative recombination. This ionic segregation is impeded by passivating the perovskite films with potassium halides, which immobilizes the excess halide species. The passivated PeLEDs show enhanced external quantum efficiency (EQE) from 0.5% to 4.5% and, importantly, show significantly enhanced stability, with minimal performance roll‐off even at high current densities (>200 mA cm−2). The decay half‐life for the devices under continuous operation at peak EQE increases from <1 to ≈15 h through passivation, and ≈200 h under pulsed operation. The results provide generalized insight into degradation pathways in PeLEDs and highlight routes to overcome these challenges.
|
Nov 2020
|
|
I07-Surface & interface diffraction
|
Baodan
Zhao
,
Yaxiao
Lian
,
Linsong
Cui
,
Giorgio
Divitini
,
Gunnar
Kusch
,
Edoardo
Ruggeri
,
Florian
Auras
,
Weiwei
Li
,
Dexin
Yang
,
Bonan
Zhu
,
Rachel A.
Oliver
,
Judith L.
Macmanus-Driscoll
,
Samuel D.
Stranks
,
Dawei
Di
,
Richard H.
Friend
Diamond Proposal Number(s):
[17223]
Abstract: Light-emitting diodes based on halide perovskites have recently reached external quantum efficiencies of over 20%. However, the performance of visible perovskite light-emitting diodes has been hindered by non-radiative recombination losses and limited options for charge-transport materials that are compatible with perovskite deposition. Here, we report efficient, green electroluminescence from mixed-dimensional perovskites deposited on a thin (~1 nm) lithium fluoride layer on an organic semiconductor hole-transport layer. The highly polar dielectric interface acts as an effective template for forming high-quality bromide perovskites on otherwise incompatible hydrophobic charge-transport layers. The control of crystallinity and dimensionality of the perovskite layer is achieved by using tetraphenylphosphonium chloride as an additive, leading to external photoluminescence quantum efficiencies of around 65%. With this approach, we obtain light-emitting diodes with external quantum efficiencies of up to 19.1% at high brightness (>1,500 cd m−2).
|
Oct 2020
|
|
|
Zewei
Li
,
Seán R.
Kavanagh
,
Mari
Napari
,
Robert G.
Palgrave
,
Mojtaba
Abdi-Jalebi
,
Zahra
Andaji-Garmaroudi
,
Daniel W.
Davies
,
Mikko
Laitinen
,
Jaakko
Julin
,
Mark A.
Isaacs
,
Richard H.
Friend
,
David O.
Scanlon
,
Aron
Walsh
,
Robert L. Z.
Hoye
Open Access
Abstract: Halide double perovskites have gained significant attention, owing to their composition of low-toxicity elements, stability in air and long charge-carrier lifetimes. However, most double perovskites, including Cs2AgBiBr6, have wide bandgaps, which limits photoconversion efficiencies. The bandgap can be reduced through alloying with Sb3+, but Sb-rich alloys are difficult to synthesize due to the high formation energy of Cs2AgSbBr6, which itself has a wide bandgap. We develop a solution-based route to synthesize phase-pure Cs2Ag(SbxBi1−x)Br6 thin films, with the mixing parameter x continuously varying over the entire composition range. We reveal that the mixed alloys (x between 0.5 and 0.9) demonstrate smaller bandgaps than the pure Sb- and Bi-based compounds. The reduction in the bandgap of Cs2AgBiBr6 achieved through alloying (170 meV) is larger than if the mixed alloys had obeyed Vegard's law (70 meV). Through in-depth computations, we propose that bandgap lowering arises from the type II band alignment between Cs2AgBiBr6 and Cs2AgSbBr6. The energy mismatch between the Bi and Sb s and p atomic orbitals, coupled with their non-linear mixing, results in the alloys adopting a smaller bandgap than the pure compounds. Our work demonstrates an approach to achieve bandgap reduction and highlights that bandgap bowing may be found in other double perovskite alloys by pairing together materials forming a type II band alignment.
|
Oct 2020
|
|
I19-Small Molecule Single Crystal Diffraction
|
Lin-Song
Cui
,
Alexander J.
Gillett
,
Shou-Feng
Zhang
,
Hao
Ye
,
Yuan
Liu
,
Xian-Kai
Chen
,
Ze-Sen
Lin
,
Emrys W.
Evans
,
William K.
Myers
,
Tanya K.
Ronson
,
Hajime
Nakanotani
,
Sebastian
Reineke
,
Jean-Luc
Bredas
,
Chihaya
Adachi
,
Richard H.
Friend
Diamond Proposal Number(s):
[21497]
Abstract: A spin-flip from a triplet to a singlet excited state, that is, reverse intersystem crossing (RISC), is an attractive route for improving light emission in organic light-emitting diodes, as shown by devices using thermally activated delayed fluorescence (TADF). However, device stability and efficiency roll-off remain challenging issues that originate from a slow RISC rate (kRISC). Here, we report a TADF molecule with multiple donor units that form charge-resonance-type hybrid triplet states leading to a small singlet–triplet energy splitting, large spin–orbit couplings, and a dense manifold of triplet states energetically close to the singlets. The kRISC in our TADF molecule is as fast as 1.5 × 107 s−1, a value some two orders of magnitude higher than typical TADF emitters. Organic light-emitting diodes based on this molecule exhibit good stability (estimated T90 about 600 h for 1,000 cd m−2), high maximum external quantum efficiency (>29.3%) and low efficiency roll-off (<2.3% at 1,000 cd m−2).
|
Aug 2020
|
|
I07-Surface & interface diffraction
|
Zahra
Andaji-Garmaroudi
,
Mojtaba
Abdi-Jalebi
,
Dengyang
Guo
,
Stuart
Macpherson
,
Aditya
Sadhanala
,
Elizabeth M.
Tennyson
,
Edoardo
Ruggeri
,
Miguel
Anaya
,
Krzysztof
Galkowski
,
Ravichandran
Shivanna
,
Kilian
Lohmann
,
Kyle
Frohna
,
Sebastian
Mackowski
,
Tom J.
Savenije
,
Richard H.
Friend
,
Samuel D.
Stranks
Diamond Proposal Number(s):
[17223]
Open Access
Abstract: Mixed‐halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution‐processed triple‐cation mixed‐halide (Cs0.06MA0.15FA0.79)Pb(Br0.4I0.6)3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar‐equivalent illumination. It is found that the illumination leads to localized surface sites of iodide‐rich perovskite intermixed with passivating PbI2 material. Time‐ and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide‐rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed‐halide mixed‐cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.
|
Sep 2019
|
|
|
Kealan J.
Fallon
,
Peter
Budden
,
Enrico
Salvadori
,
Alex M.
Ganose
,
Christopher N.
Savory
,
Lissa
Eyre
,
Simon
Dowland
,
Qianxiang
Ai
,
Stephen
Goodlett
,
Chad
Risko
,
David O.
Scanlon
,
Christopher W. M.
Kay
,
Akshay
Rao
,
Richard H.
Friend
,
Andrew J.
Musser
,
Hugo
Bronstein
Open Access
Abstract: Singlet fission, the process of forming two triplet excitons from one photon, is a characteristic reserved for only a handful of organic molecules due to the atypical energetic requirement for low energy excited triplet states. The predominant strategy for achieving such trait is by increasing ground state diradical character, however this greatly reduces ambient stability. Herein, we exploit Baird’s rule of excited state aromaticity to manipulate the singlet-triplet energy gap and create novel singlet fission candidates. We achieve this through the inclusion of a [4n] 5-membered heterocycle, whose electronic resonance promotes aromaticity in the triplet state, stabilizing its energy relative to the singlet excited state. Using this theory, we design a family of derivatives of indolonaphthyridine thiophene (INDT) with highly tunable excited state energies. Not only do we access novel singlet fission materials, they also exhibit excellent ambient stability, imparted due to the delocalized nature of the triplet excited state. Spin-coated films retained up to 85% activity after several weeks of exposure to oxygen and light, whilst analo-gous films of TIPS-pentacene showed full degradation after four days, showcasing the excellent stability of this class of singlet fission scaffold. Extension of our theoretical analysis to almost ten thousand candidates reveals an unprecedented degree of tuneability and several thousand potential fission-capable candidates, whilst clearly demonstrating the relationship between triplet aromaticity and singlet-triplet energy gap, confirming this novel strategy for manipulating the exchange energy in organic materials.
|
Aug 2019
|
|
I09-Surface and Interface Structural Analysis
|
Mojtaba
Abdi-Jalebi
,
Zahra
Andaji-Garmaroudi
,
Stefania
Cacovich
,
Camille
Stavrakas
,
Bertrand
Philippe
,
Johannes M.
Richter
,
Mejd
Alsari
,
Edward P.
Booker
,
Eline M.
Hutter
,
Andrew J.
Pearson
,
Samuele
Lilliu
,
Tom J.
Savenije
,
Hakan
Rensmo
,
Giorgio
Divitini
,
Caterina
Ducati
,
Richard H.
Friend
,
Samuel D.
Stranks
Diamond Proposal Number(s):
[15841]
Abstract: Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
|
Mar 2018
|
|