|
Haoyuan
Li
,
Reza
Nazari
,
Brian
Abbey
,
Roberto
Alvarez
,
Andrew
Aquila
,
Kartik
Ayyer
,
Anton
Barty
,
Peter
Berntsen
,
Johan
Bielecki
,
Alberto
Pietrini
,
Maximilian
Bucher
,
Gabriella
Carini
,
Henry N.
Chapman
,
Alice
Contreras
,
Benedikt J.
Daurer
,
Hasan
Demirci
,
Leonie
Flűckiger
,
Matthias
Frank
,
Janos
Hajdu
,
Max F.
Hantke
,
Brenda G.
Hogue
,
Ahmad
Hosseinizadeh
,
Mark S.
Hunter
,
H. Olof
Jönsson
,
Richard A.
Kirian
,
Ruslan P.
Kurta
,
Duane
Loh
,
Filipe R. N. C.
Maia
,
Adrian P.
Mancuso
,
Andrew J.
Morgan
,
Matthew
Mcfadden
,
Kerstin
Muehlig
,
Anna
Munke
,
Hemanth Kumar Narayana
Reddy
,
Carl
Nettelblad
,
Abbas
Ourmazd
,
Max
Rose
,
Peter
Schwander
,
M.
Marvin Seibert
,
Jonas A.
Sellberg
,
Raymond G.
Sierra
,
Zhibin
Sun
,
Martin
Svenda
,
Ivan A.
Vartanyants
,
Peter
Walter
,
Daniel
Westphal
,
Garth
Williams
,
P. Lourdu
Xavier
,
Chun Hong
Yoon
,
Sahba
Zaare
Open Access
Abstract: Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 μm x 1.7 μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
|
Nov 2020
|
|
I24-Microfocus Macromolecular Crystallography
|
E. Sethe
Burgie
,
Jonathan A.
Clinger
,
Mitchell D.
Miller
,
Aaron S.
Brewster
,
Pierre
Aller
,
Agata
Butryn
,
Franklin D.
Fuller
,
Sheraz
Gul
,
Iris D.
Young
,
Cindy C.
Pham
,
In-Sik
Kim
,
Asmit
Bhowmick
,
Lee J.
O’riordan
,
Kyle D.
Sutherlin
,
Joshua V.
Heinemann
,
Alexander
Batyuk
,
Roberto
Alonso-Mori
,
Mark S.
Hunter
,
Jason E.
Koglin
,
Junko
Yano
,
Vittal K.
Yachandra
,
Nicholas K.
Sauter
,
Aina E.
Cohen
,
Jan
Kern
,
Allen M.
Orville
,
George N.
Phillips
,
Richard D.
Vierstra
Diamond Proposal Number(s):
[19458]
Open Access
Abstract: A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs − Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Å resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion.
|
Dec 2019
|
|
I03-Macromolecular Crystallography
|
Max O.
Wiedorn
,
Dominik
Oberthuer
,
Richard
Bean
,
Robin
Schubert
,
Nadine
Werner
,
Brian
Abbey
,
Martin
Aepfelbacher
,
Luigi
Adriano
,
Aschkan
Allahgholi
,
Nasser
Al-Qudami
,
Jakob
Andreasson
,
Steve
Aplin
,
Salah
Awel
,
Kartik
Ayyer
,
Saša
Bajt
,
Imrich
Barák
,
Sadia
Bari
,
Johan
Bielecki
,
Sabine
Botha
,
Djelloul
Boukhelef
,
Wolfgang
Brehm
,
Sandor
Brockhauser
,
Igor
Cheviakov
,
Matthew A.
Coleman
,
Francisco
Cruz-Mazo
,
Cyril
Danilevski
,
Connie
Darmanin
,
R. Bruce
Doak
,
Martin
Domaracky
,
Katerina
Dörner
,
Yang
Du
,
Hans
Fangohr
,
Holger
Fleckenstein
,
Matthias
Frank
,
Petra
Fromme
,
Alfonso M.
Gañán-Calvo
,
Yaroslav
Gevorkov
,
Klaus
Giewekemeyer
,
Helen Mary
Ginn
,
Heinz
Graafsma
,
Rita
Graceffa
,
Dominic
Greiffenberg
,
Lars
Gumprecht
,
Peter
Göttlicher
,
Janos
Hajdu
,
Steffen
Hauf
,
Michael
Heymann
,
Susannah
Holmes
,
Daniel A.
Horke
,
Mark S.
Hunter
,
Siegfried
Imlau
,
Alexander
Kaukher
,
Yoonhee
Kim
,
Alexander
Klyuev
,
Juraj
Knoška
,
Bostjan
Kobe
,
Manuela
Kuhn
,
Christopher
Kupitz
,
Jochen
Küpper
,
Janine Mia
Lahey-Rudolph
,
Torsten
Laurus
,
Karoline
Le Cong
,
Romain
Letrun
,
P. Lourdu
Xavier
,
Luis
Maia
,
Filipe R. N. C.
Maia
,
Valerio
Mariani
,
Marc
Messerschmidt
,
Markus
Metz
,
Davide
Mezza
,
Thomas
Michelat
,
Grant
Mills
,
Diana C. F.
Monteiro
,
Andrew
Morgan
,
Kerstin
Mühlig
,
Anna
Munke
,
Astrid
Münnich
,
Julia
Nette
,
Keith A.
Nugent
,
Theresa
Nuguid
,
Allen M.
Orville
,
Suraj
Pandey
,
Gisel
Pena
,
Pablo
Villanueva-Perez
,
Jennifer
Poehlsen
,
Gianpietro
Previtali
,
Lars
Redecke
,
Winnie Maria
Riekehr
,
Holger
Rohde
,
Adam
Round
,
Tatiana
Safenreiter
,
Iosifina
Sarrou
,
Tokushi
Sato
,
Marius
Schmidt
,
Bernd
Schmitt
,
Robert
Schönherr
,
Joachim
Schulz
,
Jonas A.
Sellberg
,
M. Marvin
Seibert
,
Carolin
Seuring
,
Megan L.
Shelby
,
Robert L.
Shoeman
,
Marcin
Sikorski
,
Alessandro
Silenzi
,
Claudiu A.
Stan
,
Xintian
Shi
,
Stephan
Stern
,
Jola
Sztuk-Dambietz
,
Janusz
Szuba
,
Aleksandra
Tolstikova
,
Martin
Trebbin
,
Ulrich
Trunk
,
Patrik
Vagovic
,
Thomas
Ve
,
Britta
Weinhausen
,
Thomas A.
White
,
Krzysztof
Wrona
,
Chen
Xu
,
Oleksandr
Yefanov
,
Nadia
Zatsepin
,
Jiaguo
Zhang
,
Markus
Perbandt
,
Adrian P.
Mancuso
,
Christian
Betzel
,
Henry
Chapman
,
Anton
Barty
Open Access
Abstract: The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
|
Oct 2018
|
|
|
Carolin
Seuring
,
Kartik
Ayyer
,
Eleftheria
Filippaki
,
Miriam
Barthelmess
,
Jean-Nicolas
Longchamp
,
Philippe
Ringler
,
Tommaso
Pardini
,
David H.
Wojtas
,
Matthew A.
Coleman
,
Katerina
Dörner
,
Silje
Fuglerud
,
Greger
Hammarin
,
Birgit
Habenstein
,
Annette E.
Langkilde
,
Antoine
Loquet
,
Alke
Meents
,
Roland
Riek
,
Henning
Stahlberg
,
Sébastien
Boutet
,
Mark S.
Hunter
,
Jason
Koglin
,
Mengning
Liang
,
Helen M.
Ginn
,
Rick P.
Millane
,
Matthias
Frank
,
Anton
Barty
,
Henry N.
Chapman
Open Access
Abstract: Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.
|
May 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Christopher D. M.
Hutchison
,
Violeta
Cordon-Preciado
,
Rhodri M. L.
Morgan
,
Takanori
Nakane
,
Josie
Ferreira
,
Gabriel
Dorlhiac
,
Alvaro
Sanchez-Gonzalez
,
Allan S.
Johnson
,
Ann
Fitzpatrick
,
Clyde
Fare
,
Jon
Marangos
,
Chun Hong
Yoon
,
Mark S.
Hunter
,
Daniel P.
Deponte
,
Sébastien
Boutet
,
Shigeki
Owada
,
Rie
Tanaka
,
Kensuke
Tono
,
So
Iwata
,
Jasper J.
Van Thor
Diamond Proposal Number(s):
[12579]
Open Access
Abstract: The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on) state at 1.9 Angstrom resolution and the trans (off) state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA) at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS) at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN) injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form.
|
Sep 2017
|
|
|
Iris D.
Young
,
Mohamed
Ibrahim
,
Ruchira
Chatterjee
,
Sheraz
Gul
,
Franklin D.
Fuller
,
Sergey
Koroidov
,
Aaron S.
Brewster
,
Rosalie
Tran
,
Roberto
Alonso-Mori
,
Thomas
Kroll
,
Tara
Michels-Clark
,
Hartawan
Laksmono
,
Raymond G.
Sierra
,
Claudiu A.
Stan
,
Rana
Hussein
,
Miao
Zhang
,
Lacey
Douthit
,
Markus
Kubin
,
Casper
De Lichtenberg
,
Long
Vo Pham
,
Håkan
Nilsson
,
Mun Hon
Cheah
,
Dmitriy
Shevela
,
Claudio
Saracini
,
Mackenzie A.
Bean
,
Ina
Seuffert
,
Dimosthenis
Sokaras
,
Tsu-Chien
Weng
,
Ernest
Pastor
,
Clemens
Weninger
,
Thomas
Fransson
,
Louise
Lassalle
,
Philipp
Bräuer
,
Pierre
Aller
,
Peter T.
Docker
,
Babak
Andi
,
Allen M.
Orville
,
James M.
Glownia
,
Silke
Nelson
,
Marcin
Sikorski
,
Diling
Zhu
,
Mark S.
Hunter
,
Thomas J.
Lane
,
Andy
Aquila
,
Jason E.
Koglin
,
Joseph
Robinson
,
Mengning
Liang
,
Sébastien
Boutet
,
Artem Y.
Lyubimov
,
Monarin
Uervirojnangkoorn
,
Nigel W.
Moriarty
,
Dorothee
Liebschner
,
Pavel V.
Afonine
,
David G.
Waterman
,
Gwyndaf
Evans
,
Philippe
Wernet
,
Holger
Dobbek
,
William I.
Weis
,
Axel T.
Brunger
,
Petrus H.
Zwart
,
Paul D.
Adams
,
Athina
Zouni
,
Johannes
Messinger
,
Uwe
Bergmann
,
Nicholas K.
Sauter
,
Jan
Kern
,
Vittal K.
Yachandra
,
Junko
Yano
Abstract: Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4)1, in which S1 is the dark-stable state and S3 is the last semi-stable state before O–O bond formation and O2 evolution2, 3. A detailed understanding of the O–O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site4, 5, 6. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL7 provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions8, 9, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states10. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site10, 11, 12, 13. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O–O bond formation mechanisms.
|
Nov 2016
|
|