I09-Surface and Interface Structural Analysis
|
Leanne A. H.
Jones
,
Zongda
Xing
,
Jack E. N.
Swallow
,
Huw
Shiel
,
Thomas J.
Featherstone
,
Matthew J.
Smiles
,
Nicole
Fleck
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Laurence J.
Hardwick
,
David O.
Scanlon
,
Anna
Regoutz
,
Tim D.
Veal
,
Vinod R.
Dhanak
Diamond Proposal Number(s):
[25980]
Open Access
Abstract: A comprehensive study of bulk molybdenum dichalcogenides is presented with the use of soft and hard X-ray photoelectron (SXPS and HAXPES) spectroscopy combined with hybrid density functional theory (DFT). The main core levels of MoS2, MoSe2, and MoTe2 are explored. Laboratory-based X-ray photoelectron spectroscopy (XPS) is used to determine the ionization potential (IP) values of the MoX2 series as 5.86, 5.40, and 5.00 eV for MoSe2, MoSe2, and MoTe2, respectively, enabling the band alignment of the series to be established. Finally, the valence band measurements are compared with the calculated density of states which shows the role of p-d hybridization in these materials. Down the group, an increase in the p-d hybridization from the sulfide to the telluride is observed, explained by the configuration energy of the chalcogen p orbitals becoming closer to that of the valence Mo 4d orbitals. This pushes the valence band maximum closer to the vacuum level, explaining the decreasing IP down the series. High-resolution SXPS and HAXPES core-level spectra address the shortcomings of the XPS analysis in the literature. Furthermore, the experimentally determined band alignment can be used to inform future device work.
|
Dec 2022
|
|
I09-Surface and Interface Structural Analysis
|
Theodore D. C.
Hobson
,
Huw
Shiel
,
Christopher N.
Savory
,
Jack E. N.
Swallow
,
Leanne A. H.
Jones
,
Thomas J.
Featherstone
,
Matthew J.
Smiles
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Bhaskar
Das
,
Chris
Leighton
,
Guillaume
Zoppi
,
Vin R.
Dhanak
,
David O.
Scanlon
,
Tim D.
Veal
,
Ken
Durose
,
Jonathan D.
Major
Diamond Proposal Number(s):
[23160]
Open Access
Abstract: Antimony selenide (Sb2Se3) is a promising absorber material for thin-film
photovoltaics. However, certain areas of fundamental understanding of this material
remain incomplete and this presents a barrier to further efficiency gains. In particular,
recent studies have highlighted the role of majority carrier type and extrinsic doping
in drastically changing the performance of high efficiency devices [1]. Herein, Sndoped
Sb2Se3 bulk crystals are shown to exhibit p-type conductivity using Hall effect
and hot-probe measurements. The measured conductivities are higher than those
achieved through native defects alone, but with a carrier density (up to 7.4 × 1014
cm−3) several orders of magnitude smaller than the quantity of Sn included in the
source material. Additionally, a combination of ultraviolet, X-ray and hard X-ray
photoemission spectroscopies are employed to obtain a non-destructive depth profile of
the valence band maximum, confirming p-type conductivity and indicating a majority
carrier type inversion layer at the surface. Finally, these results are supported by
density functional theory calculations of the defect formation energies in Sn-doped
Sb2Se3, showing a possible limit on the carrier concentration achievable with Sn as
a dopant. This study sheds light on the effectiveness of Sn as a p-type dopant in
Sb2Se3 and highlights avenues for further optimisation of doped Sb2Se3 for solar energy
devices.
|
Sep 2022
|
|
I09-Surface and Interface Structural Analysis
|
Luke
Thomas
,
Theo D. C.
Hobson
,
Laurie J.
Phillips
,
Kieran J.
Cheetham
,
Neil
Tarbuck
,
Leanne A. H.
Jones
,
Matthew J.
Smiles
,
Chris H.
Don
,
Pardeep K.
Thakur
,
Mark
Isaacs
,
Huw
Shiel
,
Stephen
Campbell
,
Vincent
Barrioz
,
Vin
Dhanak
,
Tim
Veal
,
Jonathan D.
Major
,
Ken
Durose
Diamond Proposal Number(s):
[28268]
Open Access
Abstract: This paper is motivated by the potential advantages of higher doping and lower contact barriers in CdTe photovoltaic devices that may be realized by using n- type rather than the conventional p-type solar absorber layers. We present post-growth doping trials for indium in thin polycrystalline CdTe films using diffusion of indium metal and with indium chloride. Chemical concentrations of indium up to 1019 cm-3 were achieved and the films were verified as n-type by hard x-ray photoemission. Post growth chlorine treatment (or InCl3) was found to compensate the n-doping. Trial structures comprising CdS/CdTe:In verified that the doped absorber structures performed as expected both before and after chloride treatment, but it is recognized that this is not an optimum combination. Hence in order to identify how the advantages of n-type absorbers might be fully realized in future work, we also report simulations of a range of p-n junction combinations with n-CdTe, a number of which have the potential for high Voc.
|
Jun 2022
|
|
I09-Surface and Interface Structural Analysis
|
Matthew J.
Smiles
,
Thomas
Shalvey
,
Luke
Thomas
,
Theodore D. C.
Hobson
,
Leanne A. H.
Jones
,
Laurie
Phillips
,
Christopher
Don
,
Thomas
Beesley
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Ken
Durose
,
Jonathan D.
Major
,
Tim
Veal
Diamond Proposal Number(s):
[31170]
Open Access
Abstract: Germanium selenide (GeSe) bulk crystals, thin films and solar cells are investigated with a focus on acceptor-doping with silver (Ag) and the use of an Sb2Se3 interfacial layer. The Ag-doping of GeSe occurred by a stoichiometric melt growth technique that created Ag-doped GeSe bulk crystals. A combination of capacitance voltage measurements, synchrotron radiation photoemission spectroscopy and surface space-charge calculations indicate Ag-doping increases the hole density from 5.2×1015 cm-3 to 1.9×1016 cm-3. The melt-grown material is used as the source for thermally evaporated GeSe films within solar cells. The cell structure with the highest efficiency of 0.260% is FTO/CdS/Sb2Se3/undoped-GeSe/Au compared with solar cells without the Sb2Se3 interfacial layer or with the Ag-doped GeSe.
|
Apr 2022
|
|
I09-Surface and Interface Structural Analysis
|
Matthew J.
Smiles
,
Jonathan M.
Skelton
,
Huw
Shiel
,
Leanne A. H.
Jones
,
Jack E. N.
Swallow
,
Holly J.
Edwards
,
Thomas
Featherstone
,
Philip A. E.
Murgatroyd
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Vinod R.
Dhanak
,
Tim D.
Veal
Diamond Proposal Number(s):
[21431, 23160]
Open Access
Abstract: Germanium sulfide and germanium selenide bulk crystals were prepared using a melt growth technique. X-ray photoemission spectroscopy (XPS) was used to determine ionisation potentials of 5.74 and 5.48 eV for GeS and GeSe respectively. These values were used with the previously-measured band gaps to establish the natural band alignments with potential window layers for solar cells and to identify CdS and TiO2 as sensible choices. The ionisation potential of GeS is found to be smaller than in comparable materials. Using XPS and hard x-ray photoemission (HAXPES) measurements in conjunction with density-functional theory calculations, we demonstrate that stereochemically active Ge 4s lone pairs are present at the valence-band maxima. Our work thus provides direct evidence for active lone pairs in GeS and GeSe, with important implications for the applications of these and related materials, such as Ge-based perovskites.
|
Sep 2021
|
|
I09-Surface and Interface Structural Analysis
|
Huw
Shiel
,
Theodore D. C.
Hobson
,
Oliver S.
Hutter
,
Laurie J.
Phillips
,
Matthew J.
Smiles
,
Leanne A. H.
Jones
,
Thomas J.
Featherstone
,
Jack E. N.
Swallow
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Jonathan D.
Major
,
Ken
Durose
,
Tim D.
Veal
Diamond Proposal Number(s):
[23160]
Open Access
Abstract: Antimony selenide (Sb2
2
Se3
3
) possesses great potential in the field of photovoltaics (PV) due to its suitable properties for use as a solar absorber and good prospects for scalability. Previous studies have reported the growth of a native antimony oxide (Sb2
2
O3
3
) layer at the surface of Sb2
2
Se3
3
thin films during deposition and exposure to air, which can affect the contact between Sb2
2
Se3
3
and subsequent layers. In this study, photoemission techniques were utilized on both Sb2
2
Se3
3
bulk crystals and thin films to investigate the band alignment between Sb2
2
Se3
3
and the Sb2
2
O3
3
layer. By subtracting the valence band spectrum of an in situ cleaved Sb2
2
Se3
3
bulk crystal from that of the atmospherically contaminated bulk crystal, a valence band offset (VBO) of −1.72
−
1.72
eV is measured between Sb2
2
Se3
3
and Sb2
2
O3
3
. This result is supported by a −1.90
−
1.90
eV VBO measured between Sb2
2
O3
3
and Sb2
2
Se3
3
thin films via the Kraut method. Both results indicate a straddling alignment that would oppose carrier extraction through the back contact of superstrate PV devices. This work yields greater insight into the band alignment of Sb2
2
O3
3
at the surface of Sb2
2
Se3
3
films, which is crucial for improving the performance of these PV devices.
|
Jun 2021
|
|
I09-Surface and Interface Structural Analysis
|
Huw
Shiel
,
Oliver S.
Hutter
,
Laurie J.
Phillips
,
Jack E. N.
Swallow
,
Leanne A. H.
Jones
,
Thomas J.
Featherstone
,
Matthew J.
Smiles
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Vinod R.
Dhanak
,
Jonathan D.
Major
,
Tim D.
Veal
Diamond Proposal Number(s):
[23160]
Abstract: Sb2Se3 is a promising material for use in photovoltaics, but the optimum device structure has not yet been identified. This study provides band alignment measurements between Sb2Se3, identical to that used in high-efficiency photovoltaic devices, and its two most commonly used window layers, namely, CdS and TiO2. Band alignments are measured via two different approaches: Anderson’s rule was used to predict an interface band alignment from measured natural band alignments, and the Kraut method was used in conjunction with hard X-ray photoemission spectroscopy to directly measure the band offsets at the interface. This allows examination of the effect of interface formation on the band alignments. The conduction band minimum (CBM) of TiO2 is found by the Kraut method to lie 0.82 eV below that of Sb2Se3, whereas the CdS CBM is only 0.01 eV below that of Sb2Se3. Furthermore, a significant difference is observed between the natural alignment- and Kraut method-determined offsets for TiO2/Sb2Se3, whereas there is little difference for CdS/Sb2Se3. Finally, these results are related to device performance, taking into consideration how these results may guide the future development of Sb2Se3 solar cells and providing a methodology that can be used to assess band alignments in device-relevant systems.
|
Dec 2020
|
|
I09-Surface and Interface Structural Analysis
|
Jack E. N.
Swallow
,
Christian
Vorwerk
,
Piero
Mazzolini
,
Patrick
Vogt
,
Oliver
Bierwagen
,
Alexander
Karg
,
Martin
Eickhoff
,
Jörg
Schörmann
,
Markus R.
Wagner
,
Joseph William
Roberts
,
Paul R.
Chalker
,
Matthew J.
Smiles
,
Philip
Murgatroyd
,
Sara
Mohamed
,
Zachary W.
Lebens-Higgins
,
Louis F. J.
Piper
,
Leanne A. H.
Jones
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Joel B.
Varley
,
Juergen
Furthmüller
,
Claudia
Draxl
,
Tim D.
Veal
,
Anna
Regoutz
Diamond Proposal Number(s):
[21430, 24670]
Abstract: The search for new wide band gap materials is intensifying to satisfy the need for more advanced and energy effcient power electronic devices. Ga2O3 has emerged as an alternative to SiC and GaN, sparking a renewed interest in its fundamental properties beyond the main β-phase. Here, three polymorphs of Ga2O3, α, β, and ε, are investigated using X-ray diffraction, X-ray photoelectron and absorption spectroscopy, and ab initio theoretical approaches to gain insights into their structure - electronic structure relationships. Valence and conduction electronic structure as well as semi-core and core states are probed, providing a complete picture of the influence of local coordination environments on the electronic structure. State-of-the-art electronic structure theory, including all-electron density functional theory and many-body perturbation theory, provide detailed understanding of the spectroscopic results. The calculated spectra provide very accurate descriptions of all experimental spectra and additionally illuminate the origin of observed spectral features. This work provides a strong basis for the exploration of the Ga2O3 polymorphs as materials at the heart of future electronic device generations.
|
Sep 2020
|
|
I09-Surface and Interface Structural Analysis
|
Christopher H.
Don
,
Huw
Shiel
,
Theodore D. C.
Hobson
,
Christopher N.
Savory
,
Jack E. N.
Swallow
,
Matthew J.
Smiles
,
Leanne A. H.
Jones
,
Thomas J.
Featherstone
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Ken
Durose
,
Jonathan D.
Major
,
Vinod R.
Dhanak
,
David O.
Scanlon
,
Tim D.
Veal
Diamond Proposal Number(s):
[21431]
Open Access
Abstract: The presence of a lone pair of 5s electrons at the valence band maximum (VBM) of Sb2Se3 and the resulting band alignments are investigated using soft and hard X-ray photoemission spectroscopy in parallel with density functional theory (DFT) calculations. Vacuum-cleaved and exfoliated bulk crystals of Sb2Se3 are analysed using laboratory and synchrotron X-ray sources to acquire high resolution valence band spectra with both soft and hard X-rays. Utilising the photon-energy dependence of different orbital cross-sections and corresponding DFT calculations, the various orbital contributions to the valence band could be identified, including the 5s orbital's presence at the VBM. The ionization potential is also determined and places the VBM at 5.13 eV below the vacuum level, similar to other materials with 5s2 lone pairs, but far above those of related materials without lone pairs of electrons.
|
Aug 2020
|
|
I09-Surface and Interface Structural Analysis
|
Leanne A. H.
Jones
,
Wojciech M.
Linhart
,
Nicole
Fleck
,
Jack E. N.
Swallow
,
Philip A. E.
Murgatroyd
,
Huw
Shiel
,
Thomas J.
Featherstone
,
Matthew J.
Smiles
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Laurence J.
Hardwick
,
Jonathan
Alaria
,
Frank
Jaeckel
,
Robert
Kudrawiec
,
Lee A.
Burton
,
Aron
Walsh
,
Jonathan M.
Skelton
,
Tim D.
Veal
,
Vin R.
Dhanak
Diamond Proposal Number(s):
[21431]
Open Access
Abstract: The effects of Sn
5
s
lone pairs in the different phases of Sn sulphides are investigated with photoreflectance, hard x-ray photoemission spectroscopy (HAXPES), and density functional theory. Due to the photon energy-dependence of the photoionization cross sections, at high photon energy, the Sn
5
s
orbital photoemission has increased intensity relative to that from other orbitals. This enables the Sn
5
s
state contribution at the top of the valence band in the different Sn-sulphides, SnS,
Sn
2
S
3
, and
SnS
2
, to be clearly identified. SnS and
Sn
2
S
3
contain Sn(II) cations and the corresponding Sn
5
s
lone pairs are at the valence band maximum (VBM), leading to
∼
1.0
–1.3 eV band gaps and relatively high VBM on an absolute energy scale. In contrast,
SnS
2
only contains Sn(IV) cations, no filled lone pairs, and therefore has a
∼
2.3
eV room-temperature band gap and much lower VBM compared with SnS and
Sn
2
S
3
. The direct band gaps of these materials at 20 K are found using photoreflectance to be 1.36, 1.08, and 2.47 eV for SnS,
Sn
2
S
3
, and
SnS
2
, respectively, which further highlights the effect of having the lone-pair states at the VBM. As well as elucidating the role of the Sn
5
s
lone pairs in determining the band gaps and band alignments of the family of Sn-sulphide compounds, this also highlights how HAXPES is an ideal method for probing the lone-pair contribution to the density of states of the emerging class of materials with
n
s
2
configuration.
|
Jul 2020
|
|