|
Tomas
Ekeberg
,
Dameli
Assalauova
,
Johan
Bielecki
,
Rebecca
Boll
,
Benedikt J.
Daurer
,
Lutz A.
Eichacker
,
Linda E.
Franken
,
Davide E.
Galli
,
Luca
Gelisio
,
Lars
Gumprecht
,
Laura H.
Gunn
,
Janos
Hajdu
,
Robert
Hartmann
,
Dirk
Hasse
,
Alexandr
Ignatenko
,
Jayanath
Koliyadu
,
Olena
Kulyk
,
Ruslan
Kurta
,
Markus
Kuster
,
Wolfgang
Lugmayr
,
Jannik
Lübke
,
Adrian P.
Mancuso
,
Tommaso
Mazza
,
Carl
Nettelblad
,
Yevheniy
Ovcharenko
,
Daniel E.
Rivas
,
Max
Rose
,
Amit K.
Samanta
,
Philipp
Schmidt
,
Egor
Sobolev
,
Nicusor
Timneanu
,
Sergey
Usenko
,
Daniel
Westphal
,
Tamme
Wollweber
,
Lena
Worbs
,
Paul Lourdu
Xavier
,
Hazem
Yousef
,
Kartik
Ayyer
,
Henry N.
Chapman
,
Jonas A.
Sellberg
,
Carolin
Seuring
,
Ivan A.
Vartanyants
,
Jochen
Küpper
,
Michael
Meyer
,
Filipe R. N. C.
Maia
Open Access
Abstract: The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.
|
Jan 2024
|
|
|
Haoyuan
Li
,
Reza
Nazari
,
Brian
Abbey
,
Roberto
Alvarez
,
Andrew
Aquila
,
Kartik
Ayyer
,
Anton
Barty
,
Peter
Berntsen
,
Johan
Bielecki
,
Alberto
Pietrini
,
Maximilian
Bucher
,
Gabriella
Carini
,
Henry N.
Chapman
,
Alice
Contreras
,
Benedikt J.
Daurer
,
Hasan
Demirci
,
Leonie
Flűckiger
,
Matthias
Frank
,
Janos
Hajdu
,
Max F.
Hantke
,
Brenda G.
Hogue
,
Ahmad
Hosseinizadeh
,
Mark S.
Hunter
,
H. Olof
Jönsson
,
Richard A.
Kirian
,
Ruslan P.
Kurta
,
Duane
Loh
,
Filipe R. N. C.
Maia
,
Adrian P.
Mancuso
,
Andrew J.
Morgan
,
Matthew
Mcfadden
,
Kerstin
Muehlig
,
Anna
Munke
,
Hemanth Kumar Narayana
Reddy
,
Carl
Nettelblad
,
Abbas
Ourmazd
,
Max
Rose
,
Peter
Schwander
,
M.
Marvin Seibert
,
Jonas A.
Sellberg
,
Raymond G.
Sierra
,
Zhibin
Sun
,
Martin
Svenda
,
Ivan A.
Vartanyants
,
Peter
Walter
,
Daniel
Westphal
,
Garth
Williams
,
P. Lourdu
Xavier
,
Chun Hong
Yoon
,
Sahba
Zaare
Open Access
Abstract: Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 μm x 1.7 μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
|
Nov 2020
|
|
|
Austin
Echelmeier
,
Jorvani
Cruz Villarreal
,
Marc
Messerschmidt
,
Daihyun
Kim
,
Jesse D.
Coe
,
Darren
Thifault
,
Sabine
Botha
,
Ana
Egatz-Gomez
,
Sahir
Gandhi
,
Gerrit
Brehm
,
Chelsie E.
Conrad
,
Debra T.
Hansen
,
Caleb
Madsen
,
Saša
Bajt
,
J. Domingo
Meza-Aguilar
,
Dominik
Oberthuer
,
Max O.
Wiedorn
,
Holger
Fleckenstein
,
Derek
Mendez
,
Juraj
Knoška
,
Jose M.
Martin-Garcia
,
Hao
Hu
,
Stella
Lisova
,
Aschkai
Allahgoli
,
Yaroslav
Gevorkov
,
Kartik
Ayyer
,
Steve
Aplin
,
Helen M.
Ginn
,
Heinz
Graafsma
,
Andrew J.
Morgan
,
Dominic
Greiffenberg
,
Alexander
Klujev
,
Torsten
Laurus
,
Jennifer
Poehlsen
,
Ulrich
Trunk
,
Davide
Mezza
,
Bernd
Schmitt
,
Manuela
Kuhn
,
Raimund
Fromme
,
Jolanta
Sztuk-Dambietz
,
Natascha
Raab
,
Steffen
Hauf
,
Alessandro
Silenzi
,
Thomas
Michelat
,
Chen
Xu
,
Cyril
Danilevski
,
Andrea
Parenti
,
Leonce
Mekinda
,
Britta
Weinhausen
,
Grant
Mills
,
Patrik
Vagovic
,
Yoonhee
Kim
,
Henry
Kirkwood
,
Richard
Bean
,
Johan
Bielecki
,
Stephan
Stern
,
Klaus
Giewekemeyer
,
Adam
Round
,
Joachim
Schulz
,
Katerina
Dörner
,
Thomas D.
Grant
,
Valerio
Mariani
,
Anton
Barty
,
Adrian P.
Mancuso
,
Uwe
Weierstall
,
John C. H.
Spence
,
Henry N.
Chapman
,
Nadia
Zatsepin
,
Petra
Fromme
,
Richard A.
Kirian
,
Alexandra
Ros
Open Access
Abstract: Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.
|
Sep 2020
|
|
I03-Macromolecular Crystallography
|
Max O.
Wiedorn
,
Dominik
Oberthuer
,
Richard
Bean
,
Robin
Schubert
,
Nadine
Werner
,
Brian
Abbey
,
Martin
Aepfelbacher
,
Luigi
Adriano
,
Aschkan
Allahgholi
,
Nasser
Al-Qudami
,
Jakob
Andreasson
,
Steve
Aplin
,
Salah
Awel
,
Kartik
Ayyer
,
Saša
Bajt
,
Imrich
Barák
,
Sadia
Bari
,
Johan
Bielecki
,
Sabine
Botha
,
Djelloul
Boukhelef
,
Wolfgang
Brehm
,
Sandor
Brockhauser
,
Igor
Cheviakov
,
Matthew A.
Coleman
,
Francisco
Cruz-Mazo
,
Cyril
Danilevski
,
Connie
Darmanin
,
R. Bruce
Doak
,
Martin
Domaracky
,
Katerina
Dörner
,
Yang
Du
,
Hans
Fangohr
,
Holger
Fleckenstein
,
Matthias
Frank
,
Petra
Fromme
,
Alfonso M.
Gañán-Calvo
,
Yaroslav
Gevorkov
,
Klaus
Giewekemeyer
,
Helen Mary
Ginn
,
Heinz
Graafsma
,
Rita
Graceffa
,
Dominic
Greiffenberg
,
Lars
Gumprecht
,
Peter
Göttlicher
,
Janos
Hajdu
,
Steffen
Hauf
,
Michael
Heymann
,
Susannah
Holmes
,
Daniel A.
Horke
,
Mark S.
Hunter
,
Siegfried
Imlau
,
Alexander
Kaukher
,
Yoonhee
Kim
,
Alexander
Klyuev
,
Juraj
Knoška
,
Bostjan
Kobe
,
Manuela
Kuhn
,
Christopher
Kupitz
,
Jochen
Küpper
,
Janine Mia
Lahey-Rudolph
,
Torsten
Laurus
,
Karoline
Le Cong
,
Romain
Letrun
,
P. Lourdu
Xavier
,
Luis
Maia
,
Filipe R. N. C.
Maia
,
Valerio
Mariani
,
Marc
Messerschmidt
,
Markus
Metz
,
Davide
Mezza
,
Thomas
Michelat
,
Grant
Mills
,
Diana C. F.
Monteiro
,
Andrew
Morgan
,
Kerstin
Mühlig
,
Anna
Munke
,
Astrid
Münnich
,
Julia
Nette
,
Keith A.
Nugent
,
Theresa
Nuguid
,
Allen M.
Orville
,
Suraj
Pandey
,
Gisel
Pena
,
Pablo
Villanueva-Perez
,
Jennifer
Poehlsen
,
Gianpietro
Previtali
,
Lars
Redecke
,
Winnie Maria
Riekehr
,
Holger
Rohde
,
Adam
Round
,
Tatiana
Safenreiter
,
Iosifina
Sarrou
,
Tokushi
Sato
,
Marius
Schmidt
,
Bernd
Schmitt
,
Robert
Schönherr
,
Joachim
Schulz
,
Jonas A.
Sellberg
,
M. Marvin
Seibert
,
Carolin
Seuring
,
Megan L.
Shelby
,
Robert L.
Shoeman
,
Marcin
Sikorski
,
Alessandro
Silenzi
,
Claudiu A.
Stan
,
Xintian
Shi
,
Stephan
Stern
,
Jola
Sztuk-Dambietz
,
Janusz
Szuba
,
Aleksandra
Tolstikova
,
Martin
Trebbin
,
Ulrich
Trunk
,
Patrik
Vagovic
,
Thomas
Ve
,
Britta
Weinhausen
,
Thomas A.
White
,
Krzysztof
Wrona
,
Chen
Xu
,
Oleksandr
Yefanov
,
Nadia
Zatsepin
,
Jiaguo
Zhang
,
Markus
Perbandt
,
Adrian P.
Mancuso
,
Christian
Betzel
,
Henry
Chapman
,
Anton
Barty
Open Access
Abstract: The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
|
Oct 2018
|
|
|
Carolin
Seuring
,
Kartik
Ayyer
,
Eleftheria
Filippaki
,
Miriam
Barthelmess
,
Jean-Nicolas
Longchamp
,
Philippe
Ringler
,
Tommaso
Pardini
,
David H.
Wojtas
,
Matthew A.
Coleman
,
Katerina
Dörner
,
Silje
Fuglerud
,
Greger
Hammarin
,
Birgit
Habenstein
,
Annette E.
Langkilde
,
Antoine
Loquet
,
Alke
Meents
,
Roland
Riek
,
Henning
Stahlberg
,
Sébastien
Boutet
,
Mark S.
Hunter
,
Jason
Koglin
,
Mengning
Liang
,
Helen M.
Ginn
,
Rick P.
Millane
,
Matthias
Frank
,
Anton
Barty
,
Henry N.
Chapman
Open Access
Abstract: Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.
|
May 2018
|
|