VMXm-Versatile Macromolecular Crystallography microfocus
|
Leila T.
Alexander
,
Janani
Durairaj
,
Andriy
Kryshtafovych
,
Luciano A.
Abriata
,
Yusupha
Bayo
,
Gira
Bhabha
,
Cécile
Breyton
,
Simon G.
Caulton
,
James
Chen
,
Séraphine
Degroux
,
Damian C.
Ekiert
,
Benedikte S.
Erlandsen
,
Peter L.
Freddolino
,
Dominic
Gilzer
,
Chris
Greening
,
Jonathan M.
Grimes
,
Rhys
Grinter
,
Manickam
Gurusaran
,
Marcus D.
Hartmann
,
Charlie J.
Hitchman
,
Jeremy R.
Keown
,
Ashleigh
Kropp
,
Petri
Kursula
,
Andrew L.
Lovering
,
Bruno
Lemaitre
,
Andrea
Lia
,
Shiheng
Liu
,
Maria
Logotheti
,
Shuze
Lu
,
Sigurbjorn
Markusson
,
Mitchell D.
Miller
,
George
Minasov
,
Hartmut H.
Niemann
,
Felipe
Opazo
,
George N.
Phillips
,
Owen R.
Davies
,
Samuel
Rommelaere
,
Monica
Rosas‐lemus
,
Pietro
Roversi
,
Karla
Satchell
,
Nathan
Smith
,
Mark A.
Wilson
,
Kuan‐lin
Wu
,
Xian
Xia
,
Han
Xiao
,
Wenhua
Zhang
,
Z. Hong
Zhou
,
Krzysztof
Fidelis
,
Maya
Topf
,
John
Moult
,
Torsten
Schwede
Diamond Proposal Number(s):
[19946, 23570, 27314, 28534]
Open Access
Abstract: We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.
|
Jul 2023
|
|
I24-Microfocus Macromolecular Crystallography
VMXm-Versatile Macromolecular Crystallography microfocus
|
Jeremy R.
Keown
,
Adam D.
Crawshaw
,
Jose
Trincao
,
Loic
Carrique
,
Richard J.
Gildea
,
Sam
Horrell
,
Anna J.
Warren
,
Danny
Axford
,
Robin
Owen
,
Gwyndaf
Evans
,
Annie
Bézier
,
Peter
Metcalf
,
Jonathan M.
Grimes
Diamond Proposal Number(s):
[19946, 23570, 27314, 28534]
Open Access
Abstract: Infectious protein crystals are an essential part of the viral lifecycle for double-stranded DNA Baculoviridae and double-stranded RNA cypoviruses. These viral protein crystals, termed occlusion bodies or polyhedra, are dense protein assemblies that form a crystalline array, encasing newly formed virions. Here, using X-ray crystallography we determine the structure of a polyhedrin from Nudiviridae. This double-stranded DNA virus family is a sister-group to the baculoviruses, whose members were thought to lack occlusion bodies. The 70-year-old sample contains a well-ordered lattice formed by a predominantly α-helical building block that assembles into a dense, highly interconnected protein crystal. The lattice is maintained by extensive hydrophobic and electrostatic interactions, disulfide bonds, and domain switching. The resulting lattice is resistant to most environmental stresses. Comparison of this structure to baculovirus or cypovirus polyhedra shows a distinct protein structure, crystal space group, and unit cell dimensions, however, all polyhedra utilise common principles of occlusion body assembly.
|
Jul 2023
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[28534]
Open Access
Abstract: Bornaviruses are RNA viruses with a mammalian, reptilian, and avian host range. The viruses infect neuronal cells and in rare cases cause a lethal encephalitis. The family Bornaviridae are part of the Mononegavirales order of viruses, which contain a nonsegmented viral genome. Mononegavirales encode a viral phosphoprotein (P) that binds both the viral polymerase (L) and the viral nucleoprotein (N). The P protein acts as a molecular chaperone and is required for the formation of a functional replication/transcription complex. In this study, the structure of the oligomerization domain of the phosphoprotein determined by X-ray crystallography is reported. The structural results are complemented with biophysical characterization using circular dichroism, differential scanning calorimetry and small-angle X-ray scattering. The data reveal the phosphoprotein to assemble into a stable tetramer, with the regions outside the oligomerization domain remaining highly flexible. A helix-breaking motif is observed between the α-helices at the midpoint of the oligomerization domain that appears to be conserved across the Bornaviridae. These data provide information on an important component of the bornavirus replication complex.
|
Mar 2023
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[28534]
Open Access
Abstract: Influenza A virus (IAV) contains a segmented RNA genome that is transcribed and replicated by the viral RNA polymerase in the cell nucleus. Replicated RNA segments are assembled with viral polymerase and oligomeric nucleoprotein into viral ribonucleoprotein (vRNP) complexes which are exported from the nucleus and transported across the cytoplasm to be packaged into progeny virions. Host GTPase Rab11a associated with recycling endosomes is believed to contribute to this process by mediating the cytoplasmic transport of vRNPs. However, how vRNPs interact with Rab11a remains poorly understood. In this study, we utilised a combination of biochemical, proteomic, and biophysical approaches to characterise the interaction between the viral polymerase and Rab11a. Using pull-down assays we show that vRNPs but not cRNPs from infected cell lysates bind to Rab11a. We also show that the viral polymerase directly interacts with Rab11a and that the C-terminal two thirds of the PB2 polymerase subunit (PB2-C) comprising the cap-binding, mid-link, 627 and nuclear localization signal (NLS) domains mediate this interaction. Small-angle X-ray scattering (SAXS) experiments confirmed that PB2-C associates with Rab11a in solution forming a compact folded complex with a 1:1 stoichiometry. Furthermore, we demonstrate that the switch I region of Rab11a, that has been shown to be important for binding Rab11 family interacting proteins (Rab11-FIPs), is also important for PB2-C binding suggesting that IAV polymerase and Rab11-FIPs compete for the same binding site. Our findings expand our understanding of the interaction between the IAV polymerase and Rab11a in the cytoplasmic transport of vRNPs.
|
Jan 2022
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19946]
Open Access
Abstract: Influenza A viruses cause seasonal epidemics and global pandemics, representing a considerable burden to healthcare systems. Central to the replication cycle of influenza viruses is the viral RNA-dependent RNA polymerase which transcribes and replicates the viral RNA genome. The polymerase undergoes conformational rearrangements and interacts with viral and host proteins to perform these functions. Here we determine the structure of the 1918 influenza virus polymerase in transcriptase and replicase conformations using cryo-electron microscopy (cryo-EM). We then structurally and functionally characterise the binding of single-domain nanobodies to the polymerase of the 1918 pandemic influenza virus. Combining these functional and structural data we identify five sites on the polymerase which are sensitive to inhibition by nanobodies. We propose that the binding of nanobodies at these sites either prevents the polymerase from assuming particular functional conformations or interactions with viral or host factors. The polymerase is highly conserved across the influenza A subtypes, suggesting these sites as effective targets for potential influenza antiviral development.
|
Jan 2022
|
|
|
Hannah T.
Baddock
,
Sanja
Brolih
,
Yuliana
Yosaatmadja
,
Malitha
Ratnaweera
,
Marcin
Bielinski
,
Lonnie p.
Swift
,
Abimael
Cruz-Migoni
,
Haitian
Fan
,
Jeremy R.
Keown
,
Alexander P.
Walker
,
Garrett m.
Morris
,
Jonathan M.
Grimes
,
Ervin
Fodor
,
Christopher J.
Schofield
,
Opher
Gileadi
,
Peter J.
Mchugh
Open Access
Abstract: The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14–nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14–nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14–nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3′-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14–nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12–nsp7–nsp8 (nsp12–7–8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14–nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14–nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.
|
Jan 2022
|
|
|
Open Access
Abstract: SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5′ capping of viral RNAs. The formation of the 5′ 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5′ triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5′ end of viral RNA via a 5′ to 5′ triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.
|
Nov 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19946]
Open Access
Abstract: Influenza A viruses of the H1N1 and H3N2 subtypes are responsible for seasonal epidemic events. The influenza nucleoprotein (NP) binds to the viral genomic RNA and is essential for its replication. Efforts are under way to produce therapeutics and vaccines targeting the NP. Despite this, no structure of an NP from an H3N2 virus has previously been determined. Here, the structure of the A/Northern Territory/60/1968 (H3N2) influenza virus NP is presented at 2.2 Å resolution. The structure is highly similar to those of the A/WSN/1933 (H1N1) and A/Hong Kong/483/97 (H5N1) NPs. Nonconserved amino acids are widely dispersed both at the sequence and structural levels. A movement of the 73–90 RNA-binding loop is observed to be the key difference between the structure determined here and previous structures. The data presented here increase the understanding of structural conservation amongst influenza NPs and may aid in the design of universal interventions against influenza.
|
Jul 2021
|
|
Krios IV-Titan Krios IV at Diamond
|
Max
Renner
,
Wanwisa
Dejnirattisai
,
Loic
Carrique
,
Itziar
Serna Martin
,
Dimple
Karia
,
Serban L.
Ilca
,
Shu F.
Ho
,
Abhay
Kotecha
,
Jeremy R.
Keown
,
Juthathip
Mongkolsapaya
,
Gavin R.
Screaton
,
Jonathan M.
Grimes
Diamond Proposal Number(s):
[20223]
Open Access
Abstract: Flaviviruses such as Dengue (DENV) or Zika virus (ZIKV) assemble into an immature form within the endoplasmatic reticulum (ER), and are then processed by furin protease in the trans-Golgi. To better grasp maturation, we carry out cryo-EM reconstructions of immature Spondweni virus (SPOV), a human flavivirus of the same serogroup as ZIKV. By employing asymmetric localised reconstruction we push the resolution to 3.8 Å, enabling us to refine an atomic model which includes the crucial furin protease recognition site and a conserved Histidine pH-sensor. For direct comparison, we also solve structures of the mature forms of SPONV and DENV to 2.6 Å and 3.1 Å, respectively. We identify an ordered lipid that is present in only the mature forms of ZIKV, SPOV, and DENV and can bind as a consequence of rearranging amphipathic stem-helices of E during maturation. We propose a structural role for the pocket and suggest it stabilizes mature E.
|
Feb 2021
|
|
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[20223]
Abstract: Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.
|
Nov 2020
|
|