I03-Macromolecular Crystallography
|
Aiste
Dijokaite-Guraliuc
,
Raksha
Das
,
Daming
Zhou
,
Helen M.
Ginn
,
Chang
Liu
,
Helen M. E.
Duyvesteyn
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Thushan I.
De Silva
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Cornelius
Roemer
,
Thomas P.
Peacock
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
|
Jiandong
Huo
,
Aiste
Dijokaite-Guraliuc
,
Chang
Liu
,
Raksha
Das
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Rungtiwa
Nutalai
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Ali
Amini
,
Sagida
Bibi
,
Sandra
Adele
,
Sile Ann
Johnson
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Thushan I.
De Silva
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Andrew J.
Pollard
,
Teresa
Lambe
,
Philip
Goulder
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: Variants of SARS CoV-2 have caused successive global waves of infection. These variants, with multiple mutations in the spike protein are thought to facilitate escape from natural and vaccine-induced immunity and often increase in the affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor binding domain (RBD). Here we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared to BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection which may explain the rapid spread in India, where BA.2.75 is now the dominant variant. ACE2 affinity appears to be prioritised over greater escape.
|
Dec 2022
|
|
I03-Macromolecular Crystallography
|
Aekkachai
Tuekprakhon
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Aiste
Dijokaite-Guraliuc
,
Daming
Zhou
,
Helen M.
Ginn
,
Muneeswaran
Selvaraj
,
Chang
Liu
,
Alexander J.
Mentzer
,
Piyada
Supasa
,
Helen M. E.
Duyvesteyn
,
Raksha
Das
,
Donal
Skelly
,
Thomas G.
Ritter
,
Ali
Amini
,
Sagida
Bibi
,
Sandra
Adele
,
Sile Ann
Johnson
,
Bede
Constantinides
,
Hermione
Webster
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Derrick
Crook
,
Andrew J.
Pollard
,
Teresa
Lambe
,
Philip
Goulder
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
,
Christopher
Conlon
,
Alexandra
Deeks
,
John
Frater
,
Lisa
Frending
,
Siobhan
Gardiner
,
Anni
Jämsén
,
Katie
Jeffery
,
Tom
Malone
,
Eloise
Phillips
,
Lucy
Rothwell
,
Lizzie
Stafford
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa’s Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
|
Wanwisa
Dejnirattisai
,
Jiandong
Huo
,
Daming
Zhou
,
Jiří
Zahradník
,
Piyada
Supasa
,
Chang
Liu
,
Helen M. E.
Duyvesteyn
,
Helen M.
Ginn
,
Alexander J.
Mentzer
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Beibei
Wang
,
Aiste
Dijokaite
,
Suman
Khan
,
Ori
Avinoam
,
Mohammad
Bahar
,
Donal
Skelly
,
Sandra
Adele
,
Sile Ann
Johnson
,
Ali
Amini
,
Thomas
Ritter
,
Chris
Mason
,
Christina
Dold
,
Daniel
Pan
,
Sara
Assadi
,
Adam
Bellass
,
Nikki
Omo-Dare
,
David
Koeckerling
,
Amy
Flaxman
,
Daniel
Jenkin
,
Parvinder K.
Aley
,
Merryn
Voysey
,
Sue Ann
Costa Clemens
,
Felipe Gomes
Naveca
,
Valdinete
Nascimento
,
Fernanda
Nascimento
,
Cristiano
Fernandes Da Costa
,
Paola Cristina
Resende
,
Alex
Pauvolid-Correa
,
Marilda M.
Siqueira
,
Vicky
Baillie
,
Natali
Serafin
,
Gaurav
Kwatra
,
Kelly
Da Silva
,
Shabir A.
Madhi
,
Marta C.
Nunes
,
Tariq
Malik
,
Peter J. M.
Openshaw
,
J. Kenneth
Baillie
,
Malcolm G.
Semple
,
Alain R.
Townsend
,
Kuan-Ying A.
Huang
,
Tiong Kit
Tan
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Bede
Constantinides
,
Hermione
Webster
,
Derrick
Crook
,
Andrew J.
Pollard
,
Teresa
Lambe
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
Gideon
Schreiber
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Abstract: On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.
|
Jan 2022
|
|
I03-Macromolecular Crystallography
|
Chang
Liu
,
Daming
Zhou
,
Rungtiwa
Nutalai
,
Helen M. E.
Duyvesteyn
,
Aekkachai
Tuekprakhon
,
Helen M.
Ginn
,
Wanwisa
Dejnirattisai
,
Piyada
Supasa
,
Alexander J.
Mentzer
,
Beibei
Wang
,
James Brett
Case
,
Yuguang
Zhao
,
Donal T.
Skelly
,
Rita E.
Chen
,
Sile Ann
Johnson
,
Thomas G.
Ritter
,
Chris
Mason
,
Tariq
Malik
,
Nigel
Temperton
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Daniel K.
Clare
,
Andrew
Howe
,
Philip J. R.
Goulder
,
Elizabeth E.
Fry
,
Michael S.
Diamond
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1 and Delta-B.1.617.2 variants of SARS-CoV-2 express multiple mutations in the spike protein (S). These may alter the antigenic structure of S, causing escape from natural or vaccine-induced immunity. Beta is particularly difficult to neutralize using serum induced by early pandemic SARS-CoV-2 strains and is most antigenically separated from Delta. To understand this, we generated 674 mAbs from Beta infected individuals and performed a detailed structure-function analysis of the 27 most potent mAbs: one binding the spike N-terminal domain (NTD), the rest the receptor binding domain (RBD). Two of these RBD-binding mAbs recognise a neutralizing epitope conserved between SARS-CoV-1 and -2, whilst 18 target mutated residues in Beta: K417N, E484K, and N501Y. There is a major response to N501Y including a public IgVH4-39 sequence, with E484K and K417N also targeted. Recognition of these key residues underscores why serum from Beta cases poorly neutralizes early pandemic and Delta viruses.
|
Nov 2021
|
|
I03-Macromolecular Crystallography
|
Chang
Liu
,
Helen M.
Ginn
,
Wanwisa
Dejnirattisai
,
Piyada
Supasa
,
Beibei
Wang
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
César
López-Camacho
,
Jose
Slon-Campos
,
Thomas
Walter
,
Donal
Skelly
,
Sile Ann
Johnson
,
Thomas G.
Ritter
,
Chris
Mason
,
Sue Ann
Costa Clemens
,
Felipe Gomes
Naveca
,
Valdinete
Nascimento
,
Fernanda
Nascimento
,
Cristiano
Fernandes Da Costa
,
Paola Cristina
Resende
,
Alex
Pauvolid-Correa
,
Marilda M.
Siqueira
,
Christina
Dold
,
Nigel
Temperton
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah C.
Gilbert
,
Tariq
Malik
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Vicky
Baillie
,
Natali
Serafin
,
Zanele
Ditse
,
Kelly
Da Silva
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Shabir
Madhi
,
Marta C.
Nunes
,
Philip
Goulder
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Abstract: SARS-CoV-2 has undergone progressive change with variants conferring advantage rapidly becoming dominant lineages e.g. B.1.617. With apparent increased transmissibility variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the UK. Here we study the ability of monoclonal antibodies, convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2 and complement this with structural analyses of Fab/RBD complexes and map the antigenic space of current variants. Neutralization of both viruses is reduced when compared with ancestral Wuhan related strains but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2 suggesting that individuals previously infected by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insight for immunisation policy with future variant vaccines in non-immune populations.
|
Jun 2021
|
|
I03-Macromolecular Crystallography
|
Wanwisa
Dejnirattisai
,
Daming
Zhou
,
Piyada
Supasa
,
Chang
Liu
,
Alexander J.
Mentzer
,
Helen M.
Ginn
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Beibei
Wang
,
Guido
Paesen
,
César
López-Camacho
,
Jose
Slon-Campos
,
Thomas S.
Walter
,
Donal
Skelly
,
Sue Ann
Costa Clemens
,
Felipe Gomes
Naveca
,
Valdinete
Nascimento
,
Fernanda
Nascimento
,
Cristiano
Fernandes Da Costa
,
Paola C.
Resende
,
Alex
Pauvolid-Correa
,
Marilda M.
Siqueira
,
Christina
Dold
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah
Gilbert
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Ruben J. G.
Hulswit
,
Thomas A.
Bowden
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.
|
Mar 2021
|
|
I03-Macromolecular Crystallography
|
Piyada
Supasa
,
Daming
Zhou
,
Wanwisa
Dejnirattisai
,
Chang
Liu
,
Alexander J.
Mentzer
,
Helen M.
Ginn
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
Rungtiwa
Nutalai
,
Aekkachai
Tuekprakhon
,
Beibei
Wang
,
Guido
Paesen
,
Jose
Slon-Campos
,
César
López-Camacho
,
Bassam
Hallis
,
Naomi
Coombes
,
Kevin
Bewley
,
Sue
Charlton
,
Thomas S.
Walter
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Donal
Skelly
,
Sheila F.
Lumley
,
Natalie
Baker
,
Imam
Shaik
,
Holly
Humphries
,
Kerry
Godwin
,
Nick
Gent
,
Alex
Sienkiewicz
,
Christina
Dold
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Paul
Klenerman
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah
Gilbert
,
David R.
Hall
,
Mark
Williams
,
Neil G.
Paterson
,
William
James
,
Miles W.
Carroll
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: SARS-CoV-2 has caused over 2M deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbours 9 amino-acid changes in the spike, including N501Y in the ACE2 interacting-surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterised monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Wanwisa
Dejnirattisai
,
Daming
Zhou
,
Helen M.
Ginn
,
Helen M. E.
Duyvesteyn
,
Piyada
Supasa
,
James Brett
Case
,
Yuguang
Zhao
,
Thomas
Walter
,
Alexander J.
Mentzer
,
Chang
Liu
,
Beibei
Wang
,
Guido C.
Paesen
,
Jose
Slon-Campos
,
César
López-Camacho
,
Natasha M.
Kafai
,
Adam L.
Bailey
,
Rita E.
Chen
,
Baoling
Ying
,
Craig
Thompson
,
Jai
Bolton
,
Alex
Fyfe
,
Sunetra
Gupta
,
Tiong Kit
Tan
,
Javier
Gilbert-Jaramillo
,
William
James
,
Michael
Knight
,
Miles W.
Carroll
,
Donal
Skelly
,
Christina
Dold
,
Yanchun
Peng
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Paul
Klenerman
,
Nigel
Temperton
,
David R.
Hall
,
Mark A.
Williams
,
Neil G.
Paterson
,
Felicity
Bertram
,
C. Alistair
Siebert
,
Daniel K.
Clare
,
Andrew
Howe
,
Julika
Radecke
,
Yun
Song
,
Alain R.
Townsend
,
Kuan-Ying A.
Huang
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Michael S.
Diamond
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009, 26983]
Open Access
Abstract: Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike, and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50<0.1μg/ml) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryo-electron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.
|
Feb 2021
|
|
Controls
|
Abstract: Automation plays a key role in the macromolecular crystallography (MX) beamlines at Diamond Light Source (DLS). This is particularly evident with sample exchange; where fast, reliable, and accurate handling is required to ensure high quality and high throughput data collection. This paper looks at the design, build, and integration of an in-house robot control system. The system was designed to improve reliability and exchange times, provide high sample storage capacity, and accommodate easy upgrade paths, whilst gaining and maintaining in-house robotics knowledge. The paper also highlights how peripheral components were brought under the control of a Programmable Logic Controller (PLC) based integration unit, including a vision system.
|
Jan 2018
|
|