|
Jonathan
Youngs
,
Nicholas M.
Provine
,
Nicholas
Lim
,
Hannah R.
Sharpe
,
Ali
Amini
,
Yi-Ling
Chen
,
Jian
Luo
,
Matthew D.
Edmans
,
Panagiota
Zacharopoulou
,
Wentao
Chen
,
Oliver
Sampson
,
Robert
Paton
,
William J.
Hurt
,
David A.
Duncan
,
Anna L.
Mcnaughton
,
Vincent N.
Miao
,
Susannah
Leaver
,
Duncan L. A.
Wyncoll
,
Jonathan
Ball
,
Philip
Hopkins
,
Donal T.
Skelly
,
Eleanor
Barnes
,
Susanna
Dunachie
,
Graham
Ogg
,
Teresa
Lambe
,
Ian
Pavord
,
Alex K.
Shalek
,
Craig P.
Thompson
,
Luzheng
Xue
,
Derek C.
Macallan
,
Philip
Goulder
,
Paul
Klenerman
,
Tihana
Bicanic
Open Access
Abstract: Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49–14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08–18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 –a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.
|
Sep 2021
|
|
I03-Macromolecular Crystallography
|
Chang
Liu
,
Helen M.
Ginn
,
Wanwisa
Dejnirattisai
,
Piyada
Supasa
,
Beibei
Wang
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
César
López-Camacho
,
Jose
Slon-Campos
,
Thomas
Walter
,
Donal
Skelly
,
Sile Ann
Johnson
,
Thomas G.
Ritter
,
Chris
Mason
,
Sue Ann
Costa Clemens
,
Felipe Gomes
Naveca
,
Valdinete
Nascimento
,
Fernanda
Nascimento
,
Cristiano
Fernandes Da Costa
,
Paola Cristina
Resende
,
Alex
Pauvolid-Correa
,
Marilda M.
Siqueira
,
Christina
Dold
,
Nigel
Temperton
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah C.
Gilbert
,
Tariq
Malik
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Vicky
Baillie
,
Natali
Serafin
,
Zanele
Ditse
,
Kelly
Da Silva
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Shabir
Madhi
,
Marta C.
Nunes
,
Philip
Goulder
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Abstract: SARS-CoV-2 has undergone progressive change with variants conferring advantage rapidly becoming dominant lineages e.g. B.1.617. With apparent increased transmissibility variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the UK. Here we study the ability of monoclonal antibodies, convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2 and complement this with structural analyses of Fab/RBD complexes and map the antigenic space of current variants. Neutralization of both viruses is reduced when compared with ancestral Wuhan related strains but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2 suggesting that individuals previously infected by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insight for immunisation policy with future variant vaccines in non-immune populations.
|
Jun 2021
|
|
Krios II-Titan Krios II at Diamond
|
Yasunori
Watanabe
,
Luiza
Mendonca
,
Elizabeth R.
Allen
,
Andrew
Howe
,
Mercede
Lee
,
Joel D.
Allen
,
Himanshi
Chawla
,
David
Pulido
,
Francesca
Donnellan
,
Hannah
Davies
,
Marta
Ulaszewska
,
Sandra
Belij-Rammerstorfer
,
Susan
Morris
,
Anna-Sophia
Krebs
,
Wanwisa
Dejnirattisai
,
Juthathip
Mongkolsapaya
,
Piyada
Supasa
,
Gavin R.
Screaton
,
Catherine M.
Green
,
Teresa
Lambe
,
Peijun
Zhang
,
Sarah C.
Gilbert
,
Max
Crispin
Diamond Proposal Number(s):
[18477, 21005, 21004]
Abstract: Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.
|
Apr 2021
|
|
I03-Macromolecular Crystallography
|
Wanwisa
Dejnirattisai
,
Daming
Zhou
,
Piyada
Supasa
,
Chang
Liu
,
Alexander J.
Mentzer
,
Helen M.
Ginn
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Beibei
Wang
,
Guido
Paesen
,
César
López-Camacho
,
Jose
Slon-Campos
,
Thomas S.
Walter
,
Donal
Skelly
,
Sue Ann
Costa Clemens
,
Felipe Gomes
Naveca
,
Valdinete
Nascimento
,
Fernanda
Nascimento
,
Cristiano
Fernandes Da Costa
,
Paola C.
Resende
,
Alex
Pauvolid-Correa
,
Marilda M.
Siqueira
,
Christina
Dold
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah
Gilbert
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Ruben J. G.
Hulswit
,
Thomas A.
Bowden
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.
|
Mar 2021
|
|
I03-Macromolecular Crystallography
|
Piyada
Supasa
,
Daming
Zhou
,
Wanwisa
Dejnirattisai
,
Chang
Liu
,
Alexander J.
Mentzer
,
Helen M.
Ginn
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
Rungtiwa
Nutalai
,
Aekkachai
Tuekprakhon
,
Beibei
Wang
,
Guido
Paesen
,
Jose
Slon-Campos
,
César
López-Camacho
,
Bassam
Hallis
,
Naomi
Coombes
,
Kevin
Bewley
,
Sue
Charlton
,
Thomas S.
Walter
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Donal
Skelly
,
Sheila F.
Lumley
,
Natalie
Baker
,
Imam
Shaik
,
Holly
Humphries
,
Kerry
Godwin
,
Nick
Gent
,
Alex
Sienkiewicz
,
Christina
Dold
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Paul
Klenerman
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah
Gilbert
,
David R.
Hall
,
Mark
Williams
,
Neil G.
Paterson
,
William
James
,
Miles W.
Carroll
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: SARS-CoV-2 has caused over 2M deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbours 9 amino-acid changes in the spike, including N501Y in the ACE2 interacting-surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterised monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
|
Daming
Zhou
,
Wanwisa
Dejnirattisai
,
Piyada
Supasa
,
Chang
Liu
,
Alexander J.
Mentzer
,
Helen M.
Ginn
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Beibei
Wang
,
Guido C.
Paesen
,
Cesar
Lopez-Camacho
,
Jose
Slon-Campos
,
Bassam
Hallis
,
Naomi
Coombes
,
Kevin
Bewley
,
Sue
Charlton
,
Thomas S.
Walter
,
Donal
Skelly
,
Sheila F.
Lumley
,
Christina
Dold
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah
Gilbert
,
William
James
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Elizabeth E.
Fry
,
Juthathip
Mongkolspaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: The race to produce vaccines against SARS-CoV-2 began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK–B.1.1.7, South Africa–B.1.351 and Brazil–P.1. These variants have multiple changes in the immunodominant spike protein which facilitates viral cell entry via the Angiotensin converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K although K417N and N501Y act together against some important antibody classes. In a number of cases it would appear that convalescent and some vaccine serum offers limited protection against this variant.
|
Feb 2021
|
|