I03-Macromolecular Crystallography
|
Chang
Liu
,
Daming
Zhou
,
Rungtiwa
Nutalai
,
Helen M. E.
Duyvesteyn
,
Aekkachai
Tuekprakhon
,
Helen M.
Ginn
,
Wanwisa
Dejnirattisai
,
Piyada
Supasa
,
Alexander J.
Mentzer
,
Beibei
Wang
,
James Brett
Case
,
Yuguang
Zhao
,
Donal T.
Skelly
,
Rita E.
Chen
,
Sile Ann
Johnson
,
Thomas G.
Ritter
,
Chris
Mason
,
Tariq
Malik
,
Nigel
Temperton
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Daniel K.
Clare
,
Andrew
Howe
,
Philip J. R.
Goulder
,
Elizabeth E.
Fry
,
Michael S.
Diamond
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1 and Delta-B.1.617.2 variants of SARS-CoV-2 express multiple mutations in the spike protein (S). These may alter the antigenic structure of S, causing escape from natural or vaccine-induced immunity. Beta is particularly difficult to neutralize using serum induced by early pandemic SARS-CoV-2 strains and is most antigenically separated from Delta. To understand this, we generated 674 mAbs from Beta infected individuals and performed a detailed structure-function analysis of the 27 most potent mAbs: one binding the spike N-terminal domain (NTD), the rest the receptor binding domain (RBD). Two of these RBD-binding mAbs recognise a neutralizing epitope conserved between SARS-CoV-1 and -2, whilst 18 target mutated residues in Beta: K417N, E484K, and N501Y. There is a major response to N501Y including a public IgVH4-39 sequence, with E484K and K417N also targeted. Recognition of these key residues underscores why serum from Beta cases poorly neutralizes early pandemic and Delta viruses.
|
Nov 2021
|
|
I03-Macromolecular Crystallography
|
Chang
Liu
,
Helen M.
Ginn
,
Wanwisa
Dejnirattisai
,
Piyada
Supasa
,
Beibei
Wang
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
César
López-Camacho
,
Jose
Slon-Campos
,
Thomas
Walter
,
Donal
Skelly
,
Sile Ann
Johnson
,
Thomas G.
Ritter
,
Chris
Mason
,
Sue Ann
Costa Clemens
,
Felipe Gomes
Naveca
,
Valdinete
Nascimento
,
Fernanda
Nascimento
,
Cristiano
Fernandes Da Costa
,
Paola Cristina
Resende
,
Alex
Pauvolid-Correa
,
Marilda M.
Siqueira
,
Christina
Dold
,
Nigel
Temperton
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah C.
Gilbert
,
Tariq
Malik
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Vicky
Baillie
,
Natali
Serafin
,
Zanele
Ditse
,
Kelly
Da Silva
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Shabir
Madhi
,
Marta C.
Nunes
,
Philip
Goulder
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: SARS-CoV-2 has undergone progressive change with variants conferring advantage rapidly becoming dominant lineages e.g. B.1.617. With apparent increased transmissibility variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the UK. Here we study the ability of monoclonal antibodies, convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2 and complement this with structural analyses of Fab/RBD complexes and map the antigenic space of current variants. Neutralization of both viruses is reduced when compared with ancestral Wuhan related strains but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2 suggesting that individuals previously infected by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insight for immunisation policy with future variant vaccines in non-immune populations.
|
Jun 2021
|
|
I03-Macromolecular Crystallography
|
Wanwisa
Dejnirattisai
,
Daming
Zhou
,
Piyada
Supasa
,
Chang
Liu
,
Alexander J.
Mentzer
,
Helen M.
Ginn
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Beibei
Wang
,
Guido
Paesen
,
César
López-Camacho
,
Jose
Slon-Campos
,
Thomas S.
Walter
,
Donal
Skelly
,
Sue Ann
Costa Clemens
,
Felipe Gomes
Naveca
,
Valdinete
Nascimento
,
Fernanda
Nascimento
,
Cristiano
Fernandes Da Costa
,
Paola C.
Resende
,
Alex
Pauvolid-Correa
,
Marilda M.
Siqueira
,
Christina
Dold
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah
Gilbert
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Ruben J. G.
Hulswit
,
Thomas A.
Bowden
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.
|
Mar 2021
|
|
I03-Macromolecular Crystallography
|
Daming
Zhou
,
Wanwisa
Dejnirattisai
,
Piyada
Supasa
,
Chang
Liu
,
Alexander J.
Mentzer
,
Helen M.
Ginn
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
Aekkachai
Tuekprakhon
,
Rungtiwa
Nutalai
,
Beibei
Wang
,
Guido C.
Paesen
,
Cesar
Lopez-Camacho
,
Jose
Slon-Campos
,
Bassam
Hallis
,
Naomi
Coombes
,
Kevin
Bewley
,
Sue
Charlton
,
Thomas S.
Walter
,
Donal
Skelly
,
Sheila F.
Lumley
,
Christina
Dold
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah
Gilbert
,
William
James
,
Miles W.
Carroll
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Elizabeth E.
Fry
,
Juthathip
Mongkolspaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: The race to produce vaccines against SARS-CoV-2 began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK–B.1.1.7, South Africa–B.1.351 and Brazil–P.1. These variants have multiple changes in the immunodominant spike protein which facilitates viral cell entry via the Angiotensin converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K although K417N and N501Y act together against some important antibody classes. In a number of cases it would appear that convalescent and some vaccine serum offers limited protection against this variant.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Wanwisa
Dejnirattisai
,
Daming
Zhou
,
Helen M.
Ginn
,
Helen M. E.
Duyvesteyn
,
Piyada
Supasa
,
James Brett
Case
,
Yuguang
Zhao
,
Thomas
Walter
,
Alexander J.
Mentzer
,
Chang
Liu
,
Beibei
Wang
,
Guido C.
Paesen
,
Jose
Slon-Campos
,
César
López-Camacho
,
Natasha M.
Kafai
,
Adam L.
Bailey
,
Rita E.
Chen
,
Baoling
Ying
,
Craig
Thompson
,
Jai
Bolton
,
Alex
Fyfe
,
Sunetra
Gupta
,
Tiong Kit
Tan
,
Javier
Gilbert-Jaramillo
,
William
James
,
Michael
Knight
,
Miles W.
Carroll
,
Donal
Skelly
,
Christina
Dold
,
Yanchun
Peng
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Paul
Klenerman
,
Nigel
Temperton
,
David R.
Hall
,
Mark A.
Williams
,
Neil G.
Paterson
,
Felicity
Bertram
,
C. Alistair
Siebert
,
Daniel K.
Clare
,
Andrew
Howe
,
Julika
Radecke
,
Yun
Song
,
Alain R.
Townsend
,
Kuan-Ying A.
Huang
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Michael S.
Diamond
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009, 26983]
Open Access
Abstract: Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike, and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50<0.1μg/ml) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryo-electron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
|
Piyada
Supasa
,
Daming
Zhou
,
Wanwisa
Dejnirattisai
,
Chang
Liu
,
Alexander J.
Mentzer
,
Helen M.
Ginn
,
Yuguang
Zhao
,
Helen M. E.
Duyvesteyn
,
Rungtiwa
Nutalai
,
Aekkachai
Tuekprakhon
,
Beibei
Wang
,
Guido
Paesen
,
Jose
Slon-Campos
,
César
López-Camacho
,
Bassam
Hallis
,
Naomi
Coombes
,
Kevin
Bewley
,
Sue
Charlton
,
Thomas S.
Walter
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Donal
Skelly
,
Sheila F.
Lumley
,
Natalie
Baker
,
Imam
Shaik
,
Holly
Humphries
,
Kerry
Godwin
,
Nick
Gent
,
Alex
Sienkiewicz
,
Christina
Dold
,
Robert
Levin
,
Tao
Dong
,
Andrew J.
Pollard
,
Julian C.
Knight
,
Paul
Klenerman
,
Derrick
Crook
,
Teresa
Lambe
,
Elizabeth
Clutterbuck
,
Sagida
Bibi
,
Amy
Flaxman
,
Mustapha
Bittaye
,
Sandra
Belij-Rammerstorfer
,
Sarah
Gilbert
,
David R.
Hall
,
Mark
Williams
,
Neil G.
Paterson
,
William
James
,
Miles W.
Carroll
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: SARS-CoV-2 has caused over 2M deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbours 9 amino-acid changes in the spike, including N501Y in the ACE2 interacting-surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterised monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.
|
Feb 2021
|
|
|
Yanchun
Peng
,
Alexander J.
Mentzer
,
Guihai
Liu
,
Xuan
Yao
,
Zixi
Yin
,
Danning
Dong
,
Wanwisa
Dejnirattisai
,
Timothy
Rostron
,
Piyada
Supasa
,
Chang
Liu
,
César
López-Camacho
,
Jose
Slon-Campos
,
Yuguang
Zhao
,
David I.
Stuart
,
Guido C.
Paesen
,
Jonathan M.
Grimes
,
Alfred A.
Antson
,
Oliver W.
Bayfield
,
Dorothy E. D. P.
Hawkins
,
De-Sheng
Ker
,
Beibei
Wang
,
Lance
Turtle
,
Krishanthi
Subramaniam
,
Paul
Thomson
,
Ping
Zhang
,
Christina
Dold
,
Jeremy
Ratcliff
,
Peter
Simmonds
,
Thushan
De Silva
,
Paul
Sopp
,
Dannielle
Wellington
,
Ushani
Rajapaksa
,
Yi-Ling
Chen
,
Mariolina
Salio
,
Giorgio
Napolitani
,
Wayne
Paes
,
Persephone
Borrow
,
Benedikt M.
Kessler
,
Jeremy W.
Fry
,
Nikolai F.
Schwabe
,
Malcolm G.
Semple
,
J. Kenneth
Baillie
,
Shona C.
Moore
,
Peter J. M.
Openshaw
,
M. Azim
Ansari
,
Susanna
Dunachie
,
Eleanor
Barnes
,
John
Frater
,
Georgina
Kerr
,
Oliver
Gould
,
Teresa
Lockett
,
Robert
Levin
,
Yonghong
Zhang
,
Ronghua
Jing
,
Ling-Pei
Ho
,
Richard J.
Cornall
,
Christopher P.
Conlon
,
Paul
Klenerman
,
Gavin R.
Screaton
,
Juthathip
Mongkolsapaya
,
Andrew
Mcmichael
,
Julian C.
Knight
,
Graham
Ogg
,
Tao
Dong
Open Access
Abstract: The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide–MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.
|
Sep 2020
|
|
|
Emily R.
Adams
,
Mark
Ainsworth
,
Rekha
Anand
,
Monique I.
Andersson
,
Kathryn
Auckland
,
J. Kenneth
Baillie
,
Eleanor
Barnes
,
Sally
Beer
,
John I.
Bell
,
Tamsin
Berry
,
Sagida
Bibi
,
Miles
Carroll
,
Senthil K.
Chinnakannan
,
Elizabeth
Clutterbuck
,
Richard J.
Cornall
,
Derrick W.
Crook
,
Thushan
De Silva
,
Wanwisa
Dejnirattisai
,
Kate E.
Dingle
,
Christina
Dold
,
Alexis
Espinosa
,
David W.
Eyre
,
Helen
Farmer
,
Maria
Fernandez Mendoza
,
Dominique
Georgiou
,
Sarah J.
Hoosdally
,
Alastair
Hunter
,
Katie
Jefferey
,
Dominic F.
Kelly
,
Paul
Klenerman
,
Julian
Knight
,
Clarice
Knowles
,
Andrew J.
Kwok
,
Ullrich
Leuschner
,
Robert
Levin
,
Chang
Liu
,
César
López-Camacho
,
Jose
Martinez
,
Philippa C.
Matthews
,
Hannah
Mcgivern
,
Alexander J.
Mentzer
,
Jonathan
Milton
,
Juthathip
Mongkolsapaya
,
Shona C.
Moore
,
Marta S.
Oliveira
,
Fiona
Pereira
,
Elena
Perez
,
Timothy
Peto
,
Rutger J.
Ploeg
,
Andrew
Pollard
,
Tessa
Prince
,
David J.
Roberts
,
Justine K.
Rudkin
,
Veronica
Sanchez
,
Gavin R.
Screaton
,
Malcolm G.
Semple
,
Jose
Slon-Campos
,
Donal T.
Skelly
,
Elliot Nathan
Smith
,
Alberto
Sobrinodiaz
,
Julie
Staves
,
David I.
Stuart
,
Piyada
Supasa
,
Tomas
Surik
,
Hannah
Thraves
,
Pat
Tsang
,
Lance
Turtle
,
A. Sarah
Walker
,
Beibei
Wang
,
Charlotte
Washington
,
Nicholas
Watkins
,
James
Whitehouse
Open Access
Abstract: Background: The COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices.
Methods: We tested plasma for COVID (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142).
Results: ELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar.
Conclusions: Currently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.
|
Jun 2020
|
|